ALAGAPPAUNIVERSITY

[Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle
and Graded as Category—I University by MHRD-UGC]

(A Sate University Established by the Government of Tamil Nadu)

KARAIKUDI - 630 003

Director ate of Distance Education

BCA
V - Semester
101 53

OPERATING SYSTEMS

Authors:

"The copyright shall be vested with Alagappa University"

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any
implied warranties or merchantability or fitness for any particular use.

5

WIEAS™
Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.

E-28, Sector-8, Noida - 201301 (UP)

Phone: 0120-4078900 - Fax: 0120-4078999

Regd. Office: A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi 1100 44
- Website: www.vikaspublishing.com - Email: helpline@vikaspublishing.com

Work Order No. AU/DDE/DE-12-02/Preparation and Printing of Course Materials/2020 Dated 30.01.2020 Copies - 1000

SYLLABI-BOOK MAPPING TABLE

Operating Systems

Syllabi

Mapping in Book

BLOCK-1: INTRODUCTION
1 Introduction - Definition of Operating Systems - Computer System
Organization.
2. Computer System Architecture - Operating System Structure - Operating
System Operations.
3. System Structures: Operating System Services - System Calls - System
Programs - Operating System Design and | mplementation.

Unit 1: Introduction to
Operating System
(Pages1-18);

Unit 2: Computer System
Architecture
(Pages19-42);

Unit 3: System Structure
(Pages 43-68)

BLOCK -1I: PROCESSCONCEPT
4. Process Concept: Process Scheduling - Operations on Processes - Inter
Process Communication.
5. Process Scheduling: Scheduling Concepts- Scheduling Criteria- Scheduling
Algorithms - Multiple Processor Scheduling.

Unit 4: Processes in Operating
System

(Pages69-92);

Unit 5: Process Scheduling
(Pages 93-120)

BLOCK -11l: SYNCHRONIZATION
6. Synchronization: The Critical Section Problem - Synchronization Hardware
- Semaphores - Classic Problems of Synchronization - Monitors.
7. Deadlocks: Deadl ocks Characterization - Methods for Handling Deadlocks.
8. Deadlock Prevention - Avoidance - Detection -Recovery from Deadlock.

Unit 6: Process Synchronization
(Pages 121-146);

Unit 7: Deadlocks

(Pages 147-154);

Unit 8: Deadlock Prevention
(Pages 155-172)

BLOCK-IV: MEMORYMANAGEMENT
9. Memory Management Strategies: Swapping - Contiguous Memory
Allocation - Paging - Segmentation.

Unit 9: Memory Management
Strategies
(Pages 173-210)

BLOCK-V: FILESYSTEM

10.
11. Structure - File System Mounting - File Sharing - Protection.

File Concept - Access Methods - Directory.

12. Implementing File Systems: File System Structure - File System

I mplementation.

13. Directory Implementation - Allocation Methods - Free Space Management.

. Secondary Storage Structure: Overview of Mass Storage Structure - Disk

Structure - Disk Attachment - Disk Scheduling - Disk Management.

Unit 10: File System, Access
Methods and Directory
(Pages 211-226);

Unit 11: File Structure
(Pages 227-246);

Unit 12: Implementing

File Systems

(Pages 247-254);

Unit 13: Directory Implementation
(Pages 255-270);

Unit 14: Secondary Storage
Structure

(Pages 271-304)

CONTENTS

INTRODUCTION
BLOCK |: INTRODUCTION

UNIT1 INTRODUCTION TO OPERATING SYSTEM

10
11
12

13
14
15
16
17
18
19

Introduction
Objectives
Definition of Operating System
121 Déefinition
Evolution of Operating System
Computer System Organi zation
Answers to Check Your Progress Questions
Summary
Key Words
Self-Assessment Questions and Exercises
Further Readings

UNIT 2 COMPUTER SYSTEM ARCHITECTURE

20
21
2.2
2.3

24
25
2.6
2.7
2.8
29
210
21

Introduction
Objectives
Basics of Computer System Architecture
Operating System Structure
231 Central Processing Unit and Input/Output Structure
232 SimpleStructure
233 Virtual Machine Concept
234 Layered Approach
235 Kernel Approach
236 Modules
Operating System Operations
POST and Bootstrapping
Kernel
Answers to Check Your Progress Questions
Summary
Key Words
Self-assessment Questions and Exercises
Further Readings

1-18

19-42

UNIT 3 SYSTEM STRUCTURE

30
31
3.2
33

34
35
3.6
3.7
38
39
3.10
31
312

Introduction
Objectives
Operating Systems Structures
Systems Components
331 Process Management System
332 Process Scheduling System
333 Memory Management System
334 FileManagement System
335 Input/Output System Management System
336 Networking System
3.3.7 Protection System
338 User Interface System
Operating System Services
SystemCalls
System Programs
Operating System Design and Implementation
Answers to Check Your Progress Questions
Summary
Key Words
Self-Assessment Questions and Exercises
Further Readings

BLOCK IlI: PROCESS CONCEPT
UNIT 4 PROCESSESIN OPERATING SYSTEM

4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Introduction

Objectives

Basic Concepts of the Process

Process Scheduling

Operations on Processes

Inter Process Communication

Answers to Check Your Progress Questions
Summary

Key Words

Self-Assessment Questions and Exercises
Further Readings

UNIT5 PROCESSSCHEDULING

50
51
52
53

Introduction

Objectives

Process Scheduling Concepts
Scheduling Criteria

43-68

69-92

93-120

5.4 SchedulingAlgorithms

54.1 Multilevel Feedback Queue Scheduling
5.5 MultipleProcessor Scheduling
5.6 Answersto Check Your Progress Questions
5.7 Summary
5.8 Key Words
5.9 Sef-Assessment Questions and Exercises

5.10 Further Readings

BLOCK I11: SYNCHRONIZATION

UNIT 6 PROCESSSYNCHRONIZATION 121-146

6.0 Introduction

6.1 Objectives

6.2 Synchronization

6.3 Critica Section Problem

6.4 Synchronization Hardware

6.5 Semaphores

6.6 Classical Problemsof Synchronization

6.7 Monitors

6.8 Answersto Check Your Progress Questions
6.9 Summary

6.10 Key Words

6.11 Self-Assessment Questions and Exercises
6.12 Further Readings

UNIT 7 DEADLOCKS 147-154

7.0 Introduction

7.1 Objectives

7.2 SystemModels

7.3 Deadlock Characterization

7.4 Handling Deadlocks

7.5 Answersto Check Your Progress Questions
7.6 Summary

7.7 Key Words

7.8 Self-Assessment Questions and Exercises
7.9 Further Readings

UNIT 8 DEADLOCK PREVENTION 155-172

8.0 Introduction
8.1 Objectives
8.2 Deadlock Prevention
8.3 Deadlock Avoidance

84
8.5
8.6
8.7
8.8
89
8.10

Deadlock Detection

Deadlock Recovery

Answers to Check Your Progress Questions
Summary

Key Words

Self-Assessment Questions and Exercises
Further Readings

BLOCK IV: MEMORY MANAGEMENT
UNIT9 MEMORY MANAGEMENT STRATEGIES

9.0
9.1
9.2
9.3
9.4

9.5

9.6
9.7
9.8
9.9
9.10

9211
9.12
9.13
9.14
9.15

Introduction
Objectives
Preliminaries
Memory Management Strategies
ContiguousMemory Allocation
94.1 SinglePartition
94.2 Multiple Partitions
9.4.3 Relocation and Protection
Noncontiguous Memory Allocation
95.1 Paging
95.2 Segmentation
95.3 Segmentation with Paging
Swapping
Virtua Memory
Virtua Memory Management: Demand Paging
Copy-On-Write
Page Replacement
9101 First-In First-Out Page Replacement
9.10.2 Optimal Page Replacement

9.10.3 Least Recently Used Page Replacement
9104 The Second Chance Page Replacement

9105 Counting-Based Page Replacement Algorithm
Answers to Check Your Progress Questions
Summary

Key Words

Self-Assessment Questions and Exercises
Further Readings

BLOCK V: FILE SYSTEM

UNIT

100
101
10.2

10 FILE SYSTEM,ACCESSMETHODSAND DIRECTORY

Introduction
Objectives

File Concept

1021 FileAttributes
1022 FileOperations
1023 File Types

173-210

211-226

10.3
104
105
10.6
10.7
10.8
109

Access Methods

Directory

Answers to Check Your Progress Questions
Summary

Key Words

Self-Assessment Questions and Exercises
Further Readings

UNIT 11 FILE STRUCTURE

110
1n1
12
113
114
115
116
1.7
118
119
11.10

Introduction

Objectives

Definition of File Structure

File System Mounting

File Sharing and Locking

File Protection

Answers to Check Your Progress Questions
Summary

Key Words

Self-Assessment Questions and Exercises
Further Readings

UNIT 12 IMPLEMENTING FILE SYSTEMS

120
121
12.2
12.3
124
125
12.6
12.7
12.8

Introduction

Objectives

File System Structure

File System Implementation

Answers to Check Your Progress Questions
Summary

Key Words

Self-Assessment Questions and Exercises
Further Readings

UNIT 13 DIRECTORY IMPLEMENTATION

13.0
131
13.2
133
134
135
13.6
13.7
138
139

Introduction

Objectives

Introduction to Directory Implementation
Allocation Methods

Free Space Management

Answers to Check Your Progress Questions
Summary

Key Words

Self-Assessment Questions and Exercises
Further Readings

227-246

247-254

255-270

UNIT 14 SECONDARY STORAGE STRUCTURE

14.0
141
14.2

143

144
14.5

14.6
14.7
14.8
14.9
14.10

Introduction
Objectives
Overview of Mass Storage Structure
1421 Primary Storage Devices

1422 Secondary Storage Devices

Disk Management and Scheduling

1431 Disk Structure

Disk Attachment

Disk Scheduling

1451 Disk Scheduling Algorithms

Answers to Check Your Progress Questions
Summary

Key Words

Self-Assessment Questions and Exercises
Further Readings

271-304

INTRODUCTION

An Operating System (OS) is system software that manages computer hardware,
software resources, and provides common services for computer programs.
Characteristicdly, an Operating System or OSisreferred asaninterface between
acomputer user and computer hardware. An operating systemisasoftwarewhich
typically performs all the basic tasks, such as file management, memory
management, process management, handling i nput and output, and controlling
peripheral devices, for examplethedisk drives and the printers. Some popul ar
Operating Systemsinclude Linux Operating System, Windows Operating System,
VMS, 05/400,AlX, z/OS, etc.

As per the definition, “An Operating System or OS is a program that acts
as an interface between the user and the computer hardware and controlsthe
execution of all kinds of programs”.

Therearevarioustypesof operating systemswhichare precisely scheduled
to perform different specified tasks. Time-sharing operating systems, for example
have scheduled tasksfor efficient use of the systerm and may a soincludeaccounting
softwarefor cost allocation of processor time, mass storage, printing, and other
resources. For hardwarefunctions, such asinput and output and memory dlocation,
theoperating system actsasan intermediary between programs and the computer
hardware, athough thegpplication codeisusualy executed directly by thehardware
and frequently makes system calsto an operating system function or isinterrupted
by it. Operating systems are found on many devices that contain a computer —
from cellular phonesand video game consol esto web serversand supercomputers.
Consequently, an operating system isthe most essential and vital part of any
computer system.

Process scheduling isan operating system task that schedul es processes of
different stateslikeready, waiting, and running. Processscheduling dlowsoperating
systemto alocate atimeinterval of CPU execution for each process. Another
important reason for using aprocess scheduling systemisthat it keepsthe CPU
(Centrd Processing Unit) busy al thetime.

In concurrent computing, adeadl ock isastatein which each member of a
group waitsfor another member, including itself, totakeaction, suchassendinga
message or more commonly releasing alock. Deadlock isacommon problemin
multiprocessing systems, parallel computing, and distributed systems, where
software and hardwarelocks are used to arbitrate shared resourcesand implement
process synchronization. Inan operating system, adeadl ock occurswhen aprocess
or thread entersawaiting state because arequested system resourceis held by
another waiting process, which inturniswaiting for another resource held by
another waiting process. If aprocessisunableto changeits stateindefinitely
becausetheresourcesrequested by it are being used by another waiting process,

Introduction

NOTES

Self-Instructional
Material

Introduction

NOTES

Self-Instructional
Material

thenthe systemissaid to bein adeadlock. Deadlock isasituation whereaset of
processes are bl ocked because each processishol ding aresource and waiting for
another resource acquired by some other process.

Thisbook, Operating Systems, isdividedintofiveblocks, which arefurther
subdivided into fourteen units. Thetopicsdiscussed include operating systems,
computer system organi zation, computer system architecture, operating system
structure and operations, operating System services, operating system design and
implementation, process scheduling, inter process communication, scheduling
criteria, scheduling agorithms, synchronization, ssmaphores, deadl ocks, deadlocks
characterization, deadl ock prevention, memory management strategies, svapping,
contiguous memory allocation, paging, segmentation, file concept and access
methods, directory, file system mounting, file sharing and protection, file system
sructure, filesystemimplementation, directory implementation, secondary storage
structure, overview of massstorage structure and disk management.

Thebook followsthe Self-Instructional Mode (SIM) wherein each unit
begins with an “Introduction’ to the topic. The “‘Objectives’ are then outlined before
going on to the presentation of the detailed content in asimple and structured
format. ‘Check Your Progress’ questions are provided at regular intervals to test
the student’s understanding of the subject. ‘Answers to Check Your Progress
Questions’, a ‘Summary’, a list of “‘Key Words’, and a set of *Self-Assessment
Questions and Exercises’ are provided at the end of each unit for effective
recapitulation. Thisbook providesagood |earning platform to the peoplewho
need to be skilled intheareaof operating system functions. Logically arranged
topics, relevant examples and illustrations have been included for better

understanding of thetopics.

BLOCK - |
INTRODUCTION

UNIT 1 INTRODUCTION TO
OPERATING SYSTEM

Sructure

1.0 Introduction
1.1 Objectives
1.2 Definition of Operating System
121 Définition
1.3 Evolution of Operating System
1.4 Computer System Organization
1.5 Answersto Check Your Progress Questions
1.6 Summary
1.7 Key Words
1.8 Sef-Assessment Questions and Exercises
1.9 Further Readings

1.0 INTRODUCTION

An Operating System (OS) isan interface between acomputer user and computer
hardware. An operating system isasoftware which performsall the basic tasks
likefilemanagement, memory management, process management, handling input
and output, and controlling peripheral devices, such asdisk drivesand printers.
Some popular Operating Systemsinclude Linux Operating System, Windows
Operating System, VMS, 0OS/400, AlX, z/OS, etc. Operating systems have
evolved from slow and expensive systems to present-day technology where
computing power hasreached exponentia speedsand relatively inexpensve costs.

In the beginning, computerswere manually loaded with program codeto
control computer functionsand process coderelated to businesslogic. Thesaient
points about the Computer System Organi sation arethe1/O devicesand the CPU
both execute concurrently. Some of the processes are schedul ed for the CPU and
at thesametime, someare undergoing i nput/output operations, therearemultiple
devicecontrollers, eachin charge of aparticular device such askeyboard, mouse,
printer etc., thereisbuffer availablefor each of the devices. Theinput and output
datacan begoredin thesebuffers, the dataismoved from memory to therespective
devicebuffersby the CPU for 1/0 operations and then thisdatais moved back
from the buffersto memory and the device controllersusean interrupt toinform
the CPU that 1/0 operationiscompleted.

Introduction to
Operating System

NOTES

Self-Instructional
Material 1

Introduction to
Operating System

2

NOTES

Self-Instructional
Material

Inthisunit, youwill study the basi c definition and evol ution of operating
system, computer system organi zation.

1.1 OBJECTIVES

After going throughthisunit, youwill beableto:
- Understand the basic concept of operating system
- Analysetheconcept of user and system view of an operating system
- Discusstheevolution of operating system
- Computethe s gnificanceof computer system organi zation
- Explainthel/O structure of an operating system

1.2 DEFINITION OF OPERATING SYSTEM

1.2.1 Definition

In simple terms, an operating system is defined as the most essential and
indispensable programthat isrunning at al timeson thecomputer (usualy called
the kernel). It isaprogram that acts as an interface between the computer
usersand the computer hardware (Refer Figure 1.1). It managesthe computer
hardware and controls, and coordinates the use of hardware among various
application programs. An operating system also provides aplatform onwhich
the various computer resources, such as hardware, software and the datacan
be acceptably and efficiently runin order to perform basic tasks.

Functions of Operating System

Essentidly, thereare two basi c objectives of an operating system: To provide
convenience and efficiency to the user who isinteracting with the hardware. An
operating system isdesigned in such away that it makesthe computer system
more convenient to use and allows the system to useits resources to achieve
maximum efficiency thereby, aiding in the successful execution of desired function.
Some operating systemsaredesigned for convenience (for example, PC or Persond
Computer operating systems), some for efficiency (for example, mainframe
operating systems), and somefor the combination of both.

End Users

| —

Application
Programs

Utilities

Operating System

Computer Hardware

Fig. 1.1 Components of a Computer System

An operating system resembl esthe working pattern of agovernment. Just asa
government does not perform any useful function by itself, but it providesan
environment for the other programs so that they can do useful work with optimal
performance. Therearetwo viewpointsfrom which we canvividly understand the
roleof an operating system: theuser point of view and the system point of view.

User View

In caseof astand-d oneenvironment, whereasingle user stsinfront of apersona
computer, an operating system isdesigned basically for theease of useand some
atentionisalso paid tothesystem per for mance. However, sincethese systems
arefabricated with theintention to facilitate the single user to monopolizethe
resources, thereisno sharing of hardware and software among multiple users.
Therefore, no attention is paid to resource utilization.

In case of anetworked environment, where multiple users share resources
and may exchangeinformation, an operating systemisdesigned to maketheoptima
useof resour ces. Inthiscase, an operating system ensurestheefficient management
of theavailable processor, time, memory and /O devices, and noindividual user
triesto monopolizethe system resources. In case, the various users are connected
toamainframeor aminicomputer viatheir terminals, no attentionispaid to
usability of individual systems. However, in casethe usersare connected to the
server sviather wor kstations, acompromise between individual usability and
resource utilizationismadewhile designing an operating system.

In caseof handheld systems, the operating systemisbasicaly designed for
individual usability and manoeuvrability asthese systemsare mostly stand-alone
unitsfor individua users. Finaly, thecomputerswhich havelittleor no user view,
such as embedded systems, the operating system for such systemsisbasically
designed to ensurethat these system will runwithout user intervention.

Introduction to
Operating System

NOTES

Self-Instructional
Material 3

Introduction to
Operating System

4

NOTES

Self-Instructional
Material

System View

Asdiscussed earlier, the computer system consists of many resources, such as
CPU time, memory and 1/0 devices, which are required to solve acomputing
problem. It is the responsibility of operating system to provide a conducive
environment for effective management of these resources and allocatethemto
variousprogramsand usersin away such that the computer system can executea
progam in an efficient, and fair manner. Thus, from the system’s point of view, an
operating system primarily actsasaresourceallocator .

An operating system aso actsasacontr ol program or an inter facethat
manages the execution of user programsto avoid possible errorsand improper
use of computer system. It also monitorsthe performance of thel/O devicesand
their operations.

Check Your Progress

1. Defineoperating system.

2. What arethetwo viewpointsfrom whichwe can understand therole of an
operating system?

3. How an operating system acts asacontrol program or an interface?

1.3 EVOLUTION OF OPERATING SYSTEM

Theoperating system may processitswork serialy or concurrently. That is, it can
dedicated the computer resourcesto asingle program until the program finishes
or can dynamically assign theresourcesto variouscurrently activeprograms. The
execution of multiple programs in an interleaved manner is known as
multiprogramming. In thissection, wewill discusshow operating systemshave
evolved from serid processing to multiprogramming systems.

Serial Processing

During the late 1940s to the mid 1950s, there were no operating systems.
Programmers used to interact directly with the computer hardware by writing
programsin machinelanguage. The programsand the datawereentered into the
computer with the hel p of someinput device such asacard reader. In additionto
input devices, themachinesa so cons sted of display lightsthat wereused toindicate
anerror conditionin casean error occurred during any operation. If theexecution
of programswere compl eted successfully, the output appeared (after minutes,
hours, or days) in printed form using theline printers attached to the machine.

Whenever aprogrammer needed to operate the computer system, hehad
tofirst reserve the machinetimeby signing up for ablock of timeon ahardcopy
sign-up sheet. After signing up, the programmer used to enter the machineroom
and spend the desired block of timewaorking on the system. Oncethe desired

block of timeof the programmer wasover, the next programmer inthe queuewas
supposed to perform the same procedure. Thus, all the userswere allowed to
accessthe computer sequentially (one after the other), hencethiswasknown as
serial processing.

Themain problem associated with seria processingwasthat in some cases,
aprogrammer might sign up for two hours but finished hiswork in oneand half
hour. In such situations, the computer processing timewould bewasted, sinceno
other programmer was alowed to enter the machineroom during that time.

With advancement in technol ogies, various system softwaretoolswere
devel oped that made serid processing moreefficient. Thesetoolsincludelanguage
trandators, loaders, linkers, debuggers, libraries of common routines, and I/O
routines. Programmers could now codether programsinaprogramming language,
which could then betranslated into executable code with the hel p of language
trandator such asacompiler or aninterpreter. Theloader automated the process
of loading executabl e programsinto memory (it automaticaly transfersthe program
and the data from the input device to the memory). Debuggers assisted the
programmersin detecting and examining the errorsthat occur during program
execution (run-timeerrors). Linkerswereused to link the precompiled routines
with the object code of the program so that they could be executed along with the
object codeto producethedesired output.

Though the use of system softwaretools madethe serial processing abit
moreefficient, serial processing still resulted inlow utilization of resources. Not
only wasuser productivity low, but usershad to wait for their turns.

Batch Processing

In the mid 1950s, transistors were introduced, changing the entire scenario.
Computers now became morereliable and were bought by customerswith the
expectation that they would continueto work reliably for alongtime, thusgiving
consumersthe confidence that they could take on work on along-term basis.
These machines were named mainframes, and were generally operated by
professional operators. However, they were so expensive that only major
government agenciesand big corporations could afford to buy them.

A clear distinctionwas made between computer operatorsand programmers.
Programmers used to prepare ajob that consisted of instructions, dataand some
control information about the nature of the job, and submit it to the computer
operator. Thejobsweregenerdly intheform of punched cards. When the currently
running job wasfinished, the operator would take off the output using aprinter
(which could be kept in another room), and the programmer could collect the
output later at any time. The operator performed the same processfor all thecard
decks submitted by the programmers. Much computer timewaswasted whilethe
operator was moving from oneroomto another.

Introduction to
Operating System

NOTES

Self-Instructional
Material 5

Introduction to
Operating System

6

NOTES

Self-Instructional
Material

To reducethiswasted time and speed up the processing, the operator used
to batch together thejobswith smilar requirements, and run these batches one by
one. This system was known as batch processing system. For example, the
jobsthat need FORTRAN compiler can be batched together sothat the FORTRAN
compiler can beloaded only onceto processall thesejobs. Notethat thejobsin
abatch areindependent of each other and belong to different users.

Toimproveresource utilization and user productivity, thefirst operating
system was devel oped by General Motorsfor IBM 701 inthemid 1950s. This
operating system wastermed asbatch oper ating system. Itsmajor task wasto
transfer control automatically from onejob to next job in the batch without the
operator’s intervention. This was achieved by automating the transition from
execution of onejob to that of the next inthe batch.

Batch processing is implemented by the kernel (also known as batch
monitor), which isthe memory-resident portion of the batch operating system
(Refer Figure 1.2). Therest of thememory isallocated to the user jobsoneat a
time

Batch
Operating
System

Batch
Monitor

» Boundary

User
Program
Area

Fig. 1.2 Memory Layout for a Batch System

When abatch of smilar jobsissubmitted for process ng, the batch monitor
readsthe card reader and loadsthefirst job inthe memory for processing. The
beginning and end of each jobinthebatchisidentified by theJOB_START and
JOB_END command respectively. When the batch monitor encounters the
JOB_START command, it startsthe execution of thejob, and when it encounters
theJOB_END command, it searchesfor another jobinthebatch. Finally, when
al thejobsin thebatch arefinished, the batch monitor waitsfor the next batch to
be submitted by the operator. Hence, the operator interventionisrequired only at
thetimeof start and end of abatch.

Themain disadvantage of batch processing isthat during execution, the
CPU isoftenidle, because of the speed difference between the CPU and I/O
devices. To overcomethe problem of speed-mismatch, the concept of SPOOL ing
(Simultaneous Peripheral Operation On-line) cameinto existence. Instead of
inputting thejobsfromthe card readers, thejobswerefirst copied from the punched
cardsto the magnetic tape. The magneti ¢ tape was then mounted on atapedrive,

and the operating system read thejobsfrom theinput tape. Similarly, instead of
getting output directly on the printer, it was sent to the magneti c tape. Oncethe
jobswerefinished, the output tape was removed and connected to the printer
(which was not connected to the main computer) for printing the output. Since
magnetic tapes proved to be much faster than card readers and printers, they
reduced the CPU idletime by solving the problem of speed-mismatch.

With theintroduction of disk technology, the batch operating system Sarted
keeping dl thejobsonthedisk rather that on thetapes. Disksaremuch faster than
magnetic tapes and allow direct access, hencethe problem of speed-mismatch
wasfurther reduced.

Multiprogramming

Though the batch processing system attempted to utilize the computer resources
like CPU and I/O devicesefficiently, it still dedicatesal resourcestoasinglejob
at atime. The execution of asinglejob cannot keep the CPU and I/O devices
busy at al timesbecause during execution, thejobs sometimesrequire CPU and
sometimesrequirel/O devicesbut not both at onepoint of time. Hence, whenthe
jobisbusy with CPU, thel/O deviceshaveto wait, and when thejobisbusy with
I/O devices, the CPU remainsidle.

For example, consider two jobs P, and P,, both of which require CPU time
and I/Otimealternatively. The serial execution of P, and P, isshownin Figure
1.4(a). The shaded boxes show the CPU activity of thejobs, and thewhite boxes
show their I/O activity. Itisclear from thefigurethat when P, isbusy inits|/O
activity, the CPU isidleevenif P, isready for execution.

The idle time of CPU and I/O devices can be reduced by employing
multiprogramming which alowsmultiplejobstoresdeinthemain memory at the
sametime. If onejobisbusy with 1/O devices, the CPU can pick another job and
gtart executing it. Toimplement multiprogramming, thememory ispartitioned into
several partitions, where each partition can hold only one job. The jobs are
organized in such away that the CPU dwayshasonejob to execute. Thisincreases
theamount of CPU utilization by minimizingthe CPU idletime.

Thebasicideabehind multiprogrammingisthat the operating system loads
multiplejobsinto thememory from thejob pool onthedisk. It then picksup one
job from the pool and starts executing it. When thisjob needsto perform I/0O
activity, the operating system simply picksup another job and startsexecutingit.
Again, whenthisjob requires1/O activity, the operating system switchesto third
job, and so on. When the I/O activity of thejob getsfinished, it getsthe CPU
back. Therefore, aslong asthereisat |east onejob to execute, the CPU will never
remainidle. Thememory layout for amultiprogramming batched systemisshown
inFigure1.3.

Introduction to
Operating System

NOTES

Self-Instructional
Material 7

Introduction to
Operating System

8

NOTES

Self-Instructional
Material

Operating
System

— Boundary
Job 1

Job 2

Job 3

Job 4

Fig. 1.3 Memory Layout for a Multiprogramming System

Figure 1.4(b) showsthe multiprogrammed execution of jobsP, and P,,
both are assumed to bein memory and waiting to get CPU time. Further assume
that job P, getsthe CPU timefirst. When P, needsto performits|/O activity, the
CPU startsexecuting P,. When P, needsto perform 1/O activity, the CPU again
switchesto P, and so on. Thistype of execution of multipleprocessesisknown
asconcurrent execution.

Yy R,

2 P, < P e

a

(@) Serial Execution of P, and P,
7/ R/ .
7/
| | |
| I |

| | |
p,op e e

1 2 1 2 Pf{

|
s

B,
(b) Multiprogrammed Execution of P and P,
Fig. 1.4 Serial and Multiprogrammed Execution

Note that, for sake of simplicity, we have considered the concurrent
execution of only two programsP, and P,. However, inred life, therearegeneraly
more than two programsthat compete for system resourcesat any point of time.
The number of jobs competing to get the system resourcesin multiprogramming
environment isknown asdegr ee of multiprogramming. Ingenerd, the higher
thedegree of multiprogramming, morewill betheresource utilization.

In multiprogrammed systems, the operating sysemisresponsiblefor making
decisionsfor theusers. When ajob entersthe system, it iskept in thejob pool on
thedisk which containsall thosejobsthat arewaiting for theal ocation of main
memory. If there is not enough memory to accommodate all these jobs, the
operating system must sel ect which ones among them areto beloaded into the
main memory. Making thisdecisionisknown asjob scheduling. Tokeep multiple

jobsinthemain memory at the sametime, somekind of memory management is
required. Moreover, if multiplejobsinthe main memory are ready for execution
at the sametime, the operating system must choose one of them. Making this
decisionisknown as CPU scheduling.

Themain drawback of multiprogramming systemsisthat the programmers
havetowait for several hoursto get their output. M oreover, these systemsdo not
alow the programmerstointeract with the system. To overcomethese problems,
an extens on of multi programming systems, caled time-sharing systemsisused. In
time-sharing (or multitasking) systems, multiple usersare alowed to interact
with the systemthrough their terminals. Each user isassigned afixed time-dotin
which heor shecaninteract with the system. Theuser interactswith the sysiem by
givinginstructionsto the operating system or to aprogram using an input device
such askeyboard or amouse, and then waitsfor the response.

Theresponsetimeshould be short—generally within one second. The
CPU intime-sharing system switches so rapidly from one user to another that
each individual user getstheimpression that only he or sheisworking onthe
systemn, eventhough the system isbeing shared by multipleuserssmultaneoudy. A
typicd time-sharing systemisshowninFigure 1.5.

CPU

Terminal 1 ‘ ‘Terminalz ‘ ‘Terminal3 ‘-——— Terminal n

User 1 User 2 User 3 Usern
Fig. 1.5 Time-Sharing System

Themain advantageof time-sharing systemsisthat they provideaconvenient
environment inwhich the users can devel op and execute their programs. Unlike
batch processing systems, they provide quicker responsetime, and dlow usersto
debug their program interactively under the control of adebugging program.
Moreover, theusersare allowed to sharethe system resourcesin such away that
each user gets an impression that he or she hasall the resourcesto himself or
hersdf.

Though the concept of time-sharing was demonstrated in early 1960s, but
sinceit wasexpens ve and difficult toimplement at that time, they werenotinuse
until theearly 1970s. However, these days, most of the systems aretime sharing.

Introduction to
Operating System

NOTES

Self-Instructional
Material 9

Introduction to
Operating System

10

NOTES

Self-Instructional
Material

Check Your Progress

4. What isthebasicideabehind multiprogramming?

5. Definethe purposeof linker, loader and atrandator.

6. What ismeant by batch processing system and batch operating system?
7. Statethemain disadvantage of batch processing.

8. Definedegreeof multiprogramming.

1.4 COMPUTER SYSTEM ORGANIZATION

Oneof theimportant job of computersisstoring and managing datain aretrievable
form as and when required. These days the basic constitutents that make up a
computer system are: One or more processors (CPUs), severa device controllers
and thememory. All these componentsare connected through acommon busthat
provides accessto shared memory. Each device contraller actsasan interfacebetween
aparticular /0 deviceand an operating system. Thus, adevicecontroller playsan
important rolein operating aparticular device. For example, thedisk controller
hel psin operating disks, USB controller in operating mouse, keyboard and printer,
graphi cs adapter in operating monitor, sound card in operating audio devices, and
soon. Inorder to accessthe shared memory, thememory control ler isa so provided
that synchronizes the access to the memory. The interconnection of various
componentsviaacommon busisshownin Figure 1.6.

System Bus
[|
A A A A A
A 4 \4 A\ 4 A\ 4 A\ 4

CPU Memory Device Device Device
Controller Controller ce Controller
A A A

A\ 4 A4 \ 4

‘ Device ‘ | Device Device

Fig. 1.6 Bus Interconnection

Computer System Operation

Whenthesystemoriginaly isturned on, it runsawell-defined set of initia programs
known asbootstrap program. Thebootstrap programistypicaly storedin Read-
Only Memory (ROM) or Electricdly Erasable Programmable ROM (EEPROM).
During the booting process, all the aspects of the system checking like CPU
registers, device controllersand memory contentsareinitialized, and then an
operating systemisloaded into the memory. Oncean operating systemisloaded,
the first process, such as “init” is executed and operating system then waits for
some specia sequence of eventsto occur.

Theevent natificationisdonewiththehelp of aninterrupt that isstimul ated
either by the hardware or the software. When the hardware needsto trigger an
interrupt, it cando so by sendingasignal to the CPU viathe system bus. Whenthe
software needstotrigger aninterrupt, it can do so with the hel p of asystem call
(or monitor call).

Whenever, aninterrupt isfired, the CPU suspendsthe current task for the
time being and jumps to a predefined location in the kernel’s address space, which
containsthe starting address of the serviceroutinefor theinterrupt (known as
interrupt handler). It then executestheinterrupt handler and once the execution
iscompleted, the CPU resumesthetask that it was previously doing.

To quickly handletheinterrupts, atable of pointerstointerrupt routinesis
used. Thetable containsthe addresses of theinterrupt handlersfor the various
devicesandisgenerdly stored in thelow memory (say first 100 locationsor s0).
Theinterrupt routine can be caled indirectly with thehel p of thistable. Thisarray
of addressesisknown asinterrupt vector. Theinterrupt vector isfurther indexed
by auniquedevice number, given withtheinterrupt request, to providethe address
of theinterrupt handler for theinterrupting device.

Storage Sructure

Whenever, aprogram needsto be executed, it must befirst loaded into themain
memory (called Random-AccessM emory or commonly known by theacronym
RAM) whereitisstored. RAM isthe only storage areathat can be directly
accessed by the CPU. RAM consists of an array of memory words, where
each word hasits unique address. Thetwo instructions, namely, load and store
areusedto interact withthe RAM memory.

- Theload ingtruction isused to moveaword from the main memory to the
CPU register.

- Thestoreingtructionisused to movethe content of the CPU register tothe
manmemory.

We know that aprogram is basically aset of instructionsthat acomputer can
read to direct an intended task. The execution of the program instructions
takesplacein the CPU registers, which are primarily used astemporary storage
areas and have restricted storage margin. Usually, an instruction—execution
cycle consists of thefollowing steps.

(i) Whenever, the CPU needsto executeaninstruction, it first fetchesit from
themain memory and storesit in I nstruction Register (IR).

(i) Oncetheinstruction hasbeenloadedintothelR, thecontrol unit examines
and decodesthefetched instruction.

(i) After decodingtheinstruction, the operands(if required) arefetched from
the main memory and stored in one of theinternal registers.

(iv) Theinstructionisexecuted ontheoperandsand theresult isstored back to
themain memory.

Introduction to
Operating System

NOTES

Self-Instructional
Material 11

Introduction to
Operating System

12

NOTES

Self-Instructional
Material

Ideally all the programs and data should be stored in the main memory permanently
for fast execution and better system performance because RAM isthe only storage
areathat allowsdirect accessibility of the stored data by the CPU. But, practically
it is not possible because RAM is exorbitantly proceed and offers limited storage
capacity. Secondly, it is volatile in nature, that is, the information is vanished the
moment the power is switched off.

Therefore, to meet the requirements of sufficient data storage, we need
some storage areathat can hold largeamount of data permanently. Such atype of
storageiscalled secondary stor age. Secondary storageisnon-volatilein nature,
that is, the dataare retained even when the power isswitched off or if the system
crashes. However, dataon the secondary storage devicesare not directly accessed
by the CPU as they are used to store the data that are not being concurrently
processed. Therefore, it needsto betransferred to the main memory so that the
CPU canaccessit. Magneticdisk (generaly called disk) isthemaost widespread
form of secondary storage meansfor compuiter. It offersintense storage capacity
for enormous amount of dataand easy bility. Itisusedto hold on-linedata
foralongterm.

Inadditionto RAM and magnetic disk, some other form of storagedevices
a s exist, whichinclude cache memory, flash memory, optica discsand magnetic
tapes. Thebasic function of all the storage devicesisto storethedatain an easy
and retrievableform. However, they differ interms of their speed, cost, storage
capacity and volatility. Onthebasisof their characteristics, such ascost per unit of
data and speed with which data can be accessed, they can be arranged in a
hierarchical manner asshowninFigure1.7.

Low Fast High
. | -.,\

'.' M, ROy rimary Memory
x;{{‘/}
8y ’ ”""d}')'. b
O 15k, -\"!er_z:rm“'t. Disy Secondary Memory L
5 *

Fig. 1.7 Memory Hierarchy

/O Sructure

Handling 1/0 devicesand getting dl these partswork together isamajor problem
and that iswhat an operating system does. An operating system, therefore, provides

an effective link between the components and al so clearly outlines how each
component should function with the help of codes. Onereason for thisisthe
varying nature of 1/0 devices. An operating system must i ssue commandsto the
devices, cachinterrupts, handleerrorsand providean interface between the devices
and therest of the system.

Asadready mentioned, acomputer system cond stsof oneor more processors
and multiple device controllersthat are connected through acommon bus. Each
device controller controls aspecific typeof device and depending onthedevice
controller one or more devices may be attached to it. For example, a Small
Computer-System Interface(SCSI) controller may have seven or more devices
attachedtoit. To performitsjob, device controller maintains somelocal buffer
storage and aset of specid-purposeregisters. An operating systemsusual ly have
adevicedriver for each devicecontroller. Thedevicedriver actsasaninterface
to thedeviceto therest of the system. Thisinterface should beuniform, that is, it
should be samefor al the devicesto the extent possible.

Tostart an 1/O operation, thedevicedriver loadsthe appropriateregisters
within the device controller, which in turn examinesthe contents of registersto
determinetheaction to betaken. Suppose, theactionisto read thedatafrom the
keyboard, the controller startstransferring datafrom the devicetoitsloca buffer.
Upon completion of datatransfer, the controller informsthe devicedriver (by
generating aninterrupt) that thetransfer has been completed. Thedevicedriver
then returnsthe control aongwith the dataor pointer to the datato an operating
sysem. Thisformof 1/Oisinterrupt-driven /0, and thisschemeamountsto colossd
wastage of CPU’s time because CPU requests data from the device controller
onebyteat atime. Thisisone of the major drawbacks of thisschemeasitisnot
feasbleto transfer alargeamount of datawith thisscheme.

To solvethis problem, another scheme, that is, Direct Memory Access
(DM A) iscommonly used. Thisscheme, after setting up theregisterstoinform
the controller to know what to transfer and where, reducesthe overhead burden
of CPU and relievesthe CPU to perform other tasks. Thedevice controller can
now completeitsjob, that is, transfer acomplete block of databetweenitslocal
buffer and memory without CPU intervention. Oncetheblock of datahasbeen
transferred, aninterrupt isgenerated to inform the device driver that the operation
has been successfully executed.

Check Your Progress

9. How do you definethebootstrap program?
10. Writethestepsinvolvedinaninstruction- execution cycle.
11. Definetheusage of direct memory access scheme.

Introduction to
Operating System

NOTES

Self-Instructional
Material 13

Introduction to
Operating System

14

NOTES

Self-Instructional
Material

1.5 ANSWERS TO CHECK YOUR PROGRESS

QUESTIONS

. An operating system is defined as the most essential and indispensable

program that isrunning at all timeson the computer (usually called the
kernel). Itisaprogram that acts as an interface between the computer
users and the computer hardware. It manages the computer hardware
and controls, and coordinates the use of hardware among various
application programs.

. Thetwo viewpointsfromwhich wecan understand the role of an operating

system areuser point of view and the system point of view.

. An operating system also acts asacontrol program or an interface that

manages the execution of user programs to avoid possible errors and
improper useof computer system. It also monitorsthe performanceof the
I/0O devicesand their operations.

. Thebasi cideabehind multiprogramming isthat the operating systemloads

multiplejobsinto thememory fromthejob poal (thejobskept onthedisk).
Thejobsare organizedin such away that the CPU awayshasonejob to
execute. Thisincreasesthe CPU utilization by minimizingthe CPU idletime.

. With advancement in technol ogies, various system softwaretoolswere

devel oped that made seria processing moreefficient. Thesetoolsinclude
language tranglators, loaders, linkers, debuggers, libraries of common
routines, and 1/O routines. Programmers could now codetheir programsin
aprogramming language, which could then betranslated into executable
code with the help of language translator such as a compiler or an
interpreter. The loader automated the process of loading executable
programsinto memory (it automaticaly transfersthe program and the data
from theinput deviceto thememory). Debugger sass sted the programmers
in detecting and examining the errorsthat occur during program execution
(run-timeerrors). Linker swere used to link the precompiled routineswith
the object code of the program so that they could be executed along with
the object codeto produce the desired outpui.

. Toreducethiswasted time and speed up the processing, the operator used

to batch together thejobswith similar requirements, and run these batches
one by one. This system was known as batch processing system. For
example, thejobsthat need FORTRAN compiler can be batched together
so that the FORTRAN compiler can be loaded only onceto processall
thesejobs. Notethat thejobsin abatch areindependent of each other and
belongto different users.

10.

11.

Toimproveresource utilization and user productivity, thefirst operating
system was devel oped by Genera Motorsfor IBM 701 inthe mid 1950s.
Thisoperating system was termed as batch operating system. Its major
task wasto transfer control automatically from onejob to next job inthe
batch without the operator’s intervention. This was achieved by automating
thetransition from execution of onejob tothat of the next inthe batch.

. Themain disadvantage of batch processing isthat during execution, the

CPU isoftenidle, because of the speed difference betweenthe CPU and I/
O devices. To overcomethe problem of speed-mismatch, the concept of
SPOOLing (Simultaneous Peripheral Operation On-line) came into
existence. Instead of inputting thejobsfrom the card readers, thejobswere
first copied from the punched cardsto the magnetic tape.

. However, inred life, there are generally more than two programs that

compete for system resources at any point of time. The number of jobs
competing to get the system resourcesin multiprogramming environment is
known asdegree of multiprogramming.

. Whenthesystem originally isturned on, it runsawell-defined set of initial

programsknown asbootstrap program. The bootstrap programistypicaly
stored in Read-Only Memory (ROM) or Electrically Erasable
Programmable ROM (EEPROM). During the booting process, al the
aspects of the system checking like CPU registers, device controllersand
memory contentsareinitidized, and then an operating systemisloadedinto
thememory. Once an operating systemisloaded, thefirst process, such as
“Init” is executed and operating system then waits for some special sequence
of eventsto occur.

Usually, an instruction—execution cycle consists of the following steps.

(i) Whenever, the CPU needsto executean ingtruction, it first fetchesit
from themain memory and storesit in Instruction Register (IR).

(i) Oncetheinstruction has been loaded into the IR, the control unit
examinesand decodesthefetched instruction.

(iii) After decoding theingtruction, the operands (if required) arefetched
from themain memory and storedin one of theinternal registers.

(iv) Theinstructionisexecuted on the operandsand theresultisstored
back tothe main memory.

Direct Memory Access(DMA) iscommonly used. Thisscheme, after setting
up theregisterstoinform the controller to know what to transfer and where,
reduces the overhead burden of CPU and relieves the CPU to perform
other tasks. Thedevicecontroller can now completeitsjob, that is, transfer
acomplete block of databetween itslocal buffer and memory without
CPU intervention. Oncetheblock of datahasbeentransferred, aninterrupt
is generated to inform the device driver that the operation has been
successfully executed.

Introduction to
Operating System

NOTES

Self-Instructional
Material 15

Introduction to
Operating System

16

NOTES

Self-Instructional
Material

1.6 SUMMARY

- Anoperating systemisdefined asaprogram that isrunning at all timeson

the computer (usually called the kernel). It isaprogram that actsas an
interface between the computer usersand the computer hardware.

- Anoperating systemisdesigned in such away that it makesthe computer

system more convenient to useand allowsthe system to useitsresourcesin
an efficient manner.

- Therearetwo viewpointsfrom which we can understand therole of an

operating system: the user point of view and the system point of view.

- Incaseof astand-aoneenvironment, whereasingleuser sitsinfront of a

personal computer, an operating systemisdesigned basically for theease
of useand some attention isaso paid to system performance.

- Incaseof anetworked environment, where multiple users shareresources

and may exchangeinformation, an operating systemisdesigned for resource
utilizetion.

- Incaseof handheld systems, an operating systemishbasically designed for

individua usability asthesesygemsaremosily sland-doneunitsfor individua
users.

- From the system’s point of view, the operating system primarily acts as a

resourcealocator.

- An operating system also acts as a control program that manages the

execution of user programsto avoid errors and improper use of computer
sysem.

- Thesedaysacomputer system basically consists of oneor more processors

(CPUs), several devicecontrollers, and thememory. All these components
are connected through acommon busthat provides accessto shared memory

- When the system boots up, theinitial program that runson the systemis

known as bootstrap program.

- Theevent natificationisdonewith thehe p of aninterrupt that isfired either

by the hardware or the software.

- Whenever, aprogram needsto be executed, it must befirst loaded into the

main memory (called Random-AccessMemory or RAM).

- Thetwoinstructions, namely, load and store are used to interact with the

memory.

- Theexecution of the program instructionstakesplacein the CPU registers,

which areused astemporary storageareas, and havelimited storage space.

- RAM isexpengive, offerslimited storage capacity, andisvolatilein nature,

thatis, it losesits contentswhen power supply isswitched off.

- Secondary storageisnon-volatilein nature, that is, the datais permanently

stored and survives power failureand system crashes.

- Magneticdisk (generdly called disk) isthe primary form of secondary sorage

that enables storage of enormousamount of data.

- A sgnificant portion of code of an operating systemisdedi cated to manage

I/0O. Onereason for thisisthevarying nature of 1/0 devices.

- Each devicecontroller controlsaspecifictypeof deviceand dependingon

thetype of device controller one or more devicesmay beattached toit.

- Interrupt-driven I/O wastes CPU’s time because CPU requests data from

the device controller one byte at atime. To solve this problem, another
scheme, that is, Direct Memory Access (DMA) iscommonly used.

1.7 KEY WORDS

- Operating system: Themost essential and indispensable programthat is

running at al timesonthecomputer (usualy caled thekernd). Itisaprogram
that acts as an interface between the computer users and the computer
hardware.

- SPOOL ing: SPOOLing standsfor Simultaneous Peripheral Operation On-

line

- Degreeof multiprogramming: Thenumber of jobscompetingto get the

system resourcesin multi programming environment isknown as degree of
multiprogramming.

- Bootstrap program: A well-defined set of initial programs.

1.8

SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1
. Differentiate between the concept of user view and system view.
. Statethemgjor drawback of multiprogramming systems.

. Defineseria processing.

N UN WN

What arethetwo basi ¢ objectivesof an operating system?

What are advantages of having mainframemachines?

. What isthe meaning of concurrent execution of processes?
. What arethe advantages of having atime-sharing system?
. Definethesystem call or monitor cal and state the Significance of interrupt

handler.

Introduction to
Operating System

NOTES

Self-Instructional
Material

17

Introduction to
Operating System

18

NOTES

Self-Instructional
Material

9. What istheimportance of having a Small Computer-System Interface
(SCS) controller?

10. Defineprimary and secondary memory or storage.

Long-Answer Questions
1. Describethetwo viewpointsfrom which we can understand therole of an
operating system.
2. Writeshort noteson each of thefollowing:
(@ Direct memory access
(b) Multiprogramming
(c) Time-sharingsysems
3. How doesacomputer sysem handleinterrupts?Also, discusshow interrupts
can behandled quickly?

4. Discuss the storage structure of a computer system with the help of a
diagram.

5. Describehow an I/O operationishandled by the system with thehelp of a
diagram.

1.9 FURTHER READINGS

Silberschatz, Abraham, Peter B. Galvin and Greg Gagne. 2008. Operating System
Concepts, 8th Edition. New Jersey: JohnWiley & Sons.

Tanenbaum, Andrew S. 2006. Oper ating Systems Design and Implementation,
3rd Edition. New Jersey: PrenticeHall.

Tanenbaum, Andrew S. 2001. Moder n Operating Systems. New Jersey: Prentice
Hdl.

Deitel, Harvey M. 1984. An Introduction to Operating Systems. Boston (US):
Addison-Wedey.

Stdlings, William. 1995. Operating Systems, 2nd Edition. New Jersey: Prentice
Hal.

Milenkovic, Milan. 1992. Operating Systems. Conceptsand Design. New York:
McGraw Hill Higher Education.

Mano, M. Morris. 1993. Computer System Architecture. New Jersey: Prentice
Hal Inc.

Computer System

UNI T 2 COM PUT ER SYS-I_EM Architecture
ARCHITECTURE

NOTES

Sructure

2.0 Introduction
2.1 Objectives
2.2 Basics of Computer System Architecture
2.3 Operating System Structure
231 Central Processing Unit and Input/Output Structure
232 SimpleStructure
233 Virtual Machine Concept
234 Layered Approach
235 Kernel Approach
236 Modules
2.4 Operating System Operations
2.5 POST and Bootstrapping
2.6 Kernd
2.7 Answersto Check Your Progress Questions
2.8 Summary
2.9 Key Words
210 Self-assessment Questions and Exercises
211 Further Readings

2.0 INTRODUCTION

Depending on thenumber of processors used in asystem, acomputer system can
be broadly categorized mainly into oneof thetwo types. Single-processor system
or multiprocessor system. Every operating system hasitsown interna structurein
termsof filearrangement, memory management, storage management, etc. The
performance of the entire system dependson itsstructure. An operating systemis
composed of akernel and user level libraries. But, knowing the structure of an
operating system refersto know the basic concept of virtual machine, kerndl, and
CPU and I/O structure. For instance, programmer should not be bothered about
how memory isallocated to their programs, wheretheir programsareloaded in
memory during execution, how multiple programs are managed and executed,
how their programsare organized infilesto resideon disk, how 1/0O devicesare
supervised, etc. Providing thisenvironment inwhich programscan be successfully
executed and the set of servicesto user programsaretheresponsibilitiesof an
operating system.

Power on sdf-test isadiagnostictool that providestheend user information
about the computer. The motherboard basi cinput output system contains POST
function. Booting up isabootstrapping processthat startsthe operating system
whentheuser switchesonacomputer. Kernd isthefundamental part of an operating

Self-Instructional
Material 19

Computer System
Architecture

20

NOTES

Self-Instructional
Material

system. It is a piece of software used for providing secure access to the machine’s
hardwareto various computer programs.

In thisunit, you will study the basics of computer system architecture,
operating system structure, operating System operations, post and bootstrapping.

2.1 OBJECTIVES

After going throughthisunit, youwill beableto:
- Describethebasicsof computer system architecture
- Explainthe definition of operating system structure
- Understand the concept and functions of virtual machine concept, modules
- Discussabout the study of kernel and |ayered approach

- Analyse the advantages and disadvantages of CPU and I/O structure of
operating system

- Discussdifferent operating system operations, such asdua-modeand timer
- Understand therole and function of post and bootstrapping
- Definetheimportance of kernd of an operating system

2.2 BASICS OF COMPUTER SYSTEM
ARCHITECTURE

Depending on the number of processorsusedin asystem, acomputer system can
be broadly categorized mainly into one of thetwo types: single-processor system
or multiprocessor system.

Single-Processor Systems

Single-processor systems consist of one main CPU that can execute ageneral -
purposeinstruction set, which includesinstructionsfrom user processes. Other
thantheonemain CPU, most systems a so have some speci al - purpose processors.
These special-purpose processors may be in the form of device-specific
processors, such as disk, keyboard, etc., or in mainframes, they may be 1/0
processors that move data among the system components and allow
communication. Note that the special-purpose processors execute a limited
instruction set and do not executeinstructionsfrom the user processes. Further,
the use of special-purpose processors does not turn asingle-processor system
into amultiprocessor system.

In some systems, the specia-purpose processors are managed by the
operating systemsand in others, they arelow-level components built into the
hardware. Intheformer case, an operating system monitorstheir statusand sends

theminformation for their next task. For example, themain CPU sendsrequests
to accessthedisk to adisk controller microprocessor, whichimplementsitsown
disk queue and disk scheduling algorithm. Doingthis, themain CPU isrelieved
from the disk scheduling overhead. In the latter case, these special-purpose
processors do their tasks autonomously and an operating system cannot
communicatewith them.

Multiprocessor Systems

Asthe name suggests, the multiprocessor systems (also known aspar allel
systemsor tightly coupled systems) consist of multiple processorsin close
communication in asensethat they sharethe computer bus and even the system
clock, memory, and peripheral devices. The main advantage of multiprocessor
systemsisthat they increasethe system thr oughput by getting morework done
in less time. Another benefit is that it is more economic to have a single
multi processor system than to have multi ple single-processor systems. Inaddition,
the multiprocessor systemsare morereliable. If one out of N processorsfails,
thentheremaining N- 1 processors sharethework of thefailed processor amongst
them, and thereby preventing thefailure of the entire system.

Multiprocessor systems are of two types, namely, symmetric and
asymmetric. In symmetric multiprocessing systems, al the processors are
identical and performidentica functions. Each processor runsanidentica copy of
an operating system and these copiesinteract with each other asand when required.
All processors in symmetric multiprocessor system are peers—no master—slave
relationship exists between them. On the other hand, in asymmetric
multiprocessing systems, processors aredifferent and each of them performsa
specific task. One processor controlsthe entire system and hence, itisknown as
master processor . Other processors, known as slave processor s, either wait
for the master’s instructions to perform any task or have predefined tasks. This
scheme defines a master—slave relationship. The main disadvantage of asymmetric
multiprocessing systemsisthat thefailure of the master processor bringstheentire
systemto ahalt. Figure 2.1 shows symmetric and asymmetric multi processor
System.

A 4

Processor 1 | <€ Processor 2

A A

A 4 A\ 4
Processor 3 Processor 4

A
A

(a) Symmetric Multiprocessing System

Computer System
Architecture

NOTES

Self-Instructional
Material 21

Computer System

Architecture Processor 1
NOTES A//
Processor 2 | | Processor 3 | Processor 4 | ~77~ | Processor n

(b) Asymmetric M ultiprocessing System
Fig 2.1 Symmetric and Asymmetric Multiprocessing Systems

2.3 OPERATING SYSTEM STRUCTURE

Every operating system hasitsowninterna structureintermsof filearrangement,
memory management, storage management, etc. The performance of theentire
system dependsonitsstructure. Theinterna structure of an operating system
provides an idea of how the components of the operating system are
interconnected and blended into the kernel.

2.3.1 Central Processing Unit and Input/Output Sructure

TheArithmetic and Logica Unit (ALU) and the Control Unit (CU) of acomputer
systemarejointly known asthe central processing unit. You may call CPU asthe
brain of any computer system. It takesall major decisions, makes all sorts of
cd culationsand directsdifferent partsof thecomputer functionsby activatingand
controlling the operations.

For acomputer to start running, it needsto haveaninitia programto run.
Thisinitia program, aso known as bootstrap program, tendstobesimple. Itis
stored in CPU registers. Theroleof theinitia program or the bootstrap program
isto load the operating system for the execution of the system. The operating
system starts executing the first process, such as “init” and waits for some event to
occur. Event isknown to occur by an interrupt from either the hardware or the
software. Hardware can interrupt through system buswhereas software through
systemcdl.

WhenaCPU isinterrupted, itimmediately stopswhatever it isdoing and
returnsto afixed location. Thisfixed location usualy containsthe starting address
wherethe serviceroutinefor theinterrupt islocated.

Self-Instructional
22 Material

MEMORY Computer System
Architecture

CPU

NOTES

110
DEVICES

Fig. 2.2 Sructure of a Computer System

I nput/Output Sructure

There are various types of 1/O devices that are used for different types of
applications. They arealso known as peripheral devicesbecausethey surround
the CPU and make acommunication between computer and the outer world.
Followingtypesof devicesareimplemented with system unit:

I nput Devices: Input devicesare necessary to convert our information or data
into aform, which can be understood by the computer. A goodinput device should
providetimely, accurate and useful datato the main memory of the computer for
processing. Keyboard, mouse and scanner arethe most useful input devices.

Output Devices: Visud Display Unit (VDU), terminasand printersarethe most
commonly used output devices.

2.3.2 Simple Structure

Theeementary approach to structure an operating systemisknownasasimple
gtructure. Inthisgpproach, thestructureof the operating systemisnot well-defined.
MS-DOS is an operating system designed with this approach in view. It was
initialy designed tobesmpleand smal insizehaving limited scope, but withtime,
it outgrew itsscope. Designed with aview to providing morefunctionality within
lessspace; itwasnot carefully divided into modules. Figure 2.3 showsthe structure
of MS-DOS system.

—</— Application F'rcgram
{Headem system program

MS-DOS device dn@
e ROM BIOS device drw

Fig. 2.3 Sructure of MSDOS System

Self-Instructional
Material 23

grom”ﬁl;% r%’Stem Though MS-DOS hasalimited structuring, thereisno clear separation

between thedifferent interfacesand leve of functiondity. For example, gpplication

programscan directly call thebasic /O routinesto read/write dataon disk instead

of going through aseriesof interfaces. Thisexemption makestheM S-DOS system

NOTES susceptible to malicious programswhich may lead to system crash. Moreover,

dueto lack of hardware protection and dual-mode operation in Intel 8088 system

(for which MS-DOS system was devel oped), the base hardware was directly
accessi bleto the application programs.

2.3.3 Virtual Machine Concept

The operating system provides applicationswith avirtual machine. Thistype of
Situation isana ogousto the communication line of atelephony company which
enables separate and i sol ated conversationsover the samewire(s). Animportant
aspect of such asystemisthat the user can run an operating system asper choice.

Thevirtua machine concept can bewe | understood by understanding the
difference between conventional multiprogramming and virtual machine
multiprogramming. In conventiona multiprogramming, processesaredlocated a
portion of thereal machineresources, i.e., aresourcefromthe samemachineis
distributed among several resources (Refer Figure2.4).

Conventional Multi-
programming OS

dERNAN

JOB 1 B2 | | T JOB N

Fig. 2.4 Conventional Multiprogramming

Inthevirtua machinemultiprogramming system, asinglemachinegivesanilluson
of many virtua machineseach of them havingitsown virtua processor and storage
space which can be handled through process scheduling (Refer Figure 2.5).

Virtual Machine
Operating System

Virtual Machine 1 Virtual Machine 2 Virtual Machine 3

Fig. 2.5 Virtual Machine Multiprogramming

Self-Instructional
24 Material

Advantages Computer System
Architecture

Following aretheadvantagesof virtua machine:

- Eachuser isalocated with amachinewhich diminates mutual interference
between users. NOTES

- A user can select an OS of the choicefor executing hisvirtual machine.
Hence, the user can simultaneoudly use different operating systemson the
same computer system.

2.3.4 Layered Approach

Inlayered approach, the operating systemisorganized asahierarchy of layers
with each layer built on thetop of thelayer below it. Thetopmost layer istheuser
interface, while the bottommost layer isthe hardware. Each layer hasawell-
defined function and comprises datastructuresand aset of routines. Thelayers
arecongtructedin such amanner that atypical layer (say, layer n) isabletoinvoke
operationsonitslower layers, and the operations of layer ncan beinvoked by its
higher layers.

“THE system’ was the first layer-based operating system developed in 1968
by E.W. Dijkstraand hisstudents. Thisoperating system consisted of six layers
(0-5) and each layer had apre-defined function asshownin Figure 2.6.

Layer 5
The operator

Layer 4
User programs

Layerd
IO management

Layer 2
Qperatorprocess communication

Layer 1
Memeory and drum management

Layer O
Processor allocation and multiprogramming

Fig. 2.6 Layersin THE System

The layered design of operating system provides some benefits, which areas
follows

- It simplifiesthe debugging and verification of the system. Asthelowest
layer usesmerely the base hardware, it can be debugged without referring
totherest of the system. Onceit hasbeen verified, itscorrect functioning
can be assumed whilethe second layer isbeing verified. Similarly, each
higher-level layer can be debugged independent of thelower layer. If, during
verification, any bugisfound, it will be on thelayer being debugged as
lower layershaved ready been verified.

Self-Instructional
Material 25

Computer System
Architecture

26

NOTES

Self-Instructional
Material

- It supportsinformation hiding. Each higher-leve layer isrequired to know
only what operationsthelower layersprovide and not how they are being
implemented.

Thelayered approach has somelimitationstoo, which areasfollows:

- Aseachhigher-level layer isalowedto useonly itslower-level layers, the
layersmust be defined carefully. For example, thedevicedriver of aphysica
disk must be defined at a layer below the one containing memory-
management routines. Thisis because memory management needsto use
thephysicd disk.

- Thetimetakenin executing asystem call ismuch longer ascompared to
that of non-layered systems. Thisisbecause any request by theuser hasto
pass through a number of layers before the action could be taken. Asa
result, system overheadsincrease and efficiency deceases.

2.3.5Kerne Approach

Kernel isthe central part of an operating system which directly controls the
computer hardware. Following arethe advantages of kernel.

- Kernel liesbelow system call interface and abovethe physical hardware.

- It provideslarge number of functions, such as CPU scheduling, memory
management, I/0O management, synchronization of processes, inter process
communi cation and other operating system functions.

Microkernels: Initially, thesize of kernel wassmall; theeraof large monolithic
kernelsbegan with Berkley UNIX (BSD). Themonolithic ker nel runsevery
bad c sysem sarvicelike scheduling, interprocesscommunicetion, filemanagemernt,
process and memory management, device management, etc., inthekernel space
itsdf. However, theinclusion of dl basic serviceswithinthekernd spaceincreases
thegzeof thekernd. Inaddition, thesekernd sweredifficult to extend and maintain.
Theaddition of new featuresrequired recompilation of thewholekernel, which
wastimeand resource consuming.

To overcome these problems, an approach called microkernel was
devel oped that emphasi zed on modularizing thekernel. Theideawasto remove
theless-essentid componentsfrom thekernd, keeping only asubset of mechanisms
typicaly includedinakernd, thereby reducing itssizeaswell asnumber of system
cals. Thecomponentsmoved outsidethekerne areimplemented elther assystem
or user-level programs. MACH system and OS X are the examplesof operating
systemsdesigned using the microkernel gpproach.

The mainadvantage of amicrokernd approach isthat the operating system
can be extended easily; the addition of new servicesin the user space does not
causeany changesat thekernd level. Inaddition, microkernel offershigh security
and reliability asmost services are running as user processesrather than kernel
processes. Thus, if any of therunning servicesfail, therest of the system remains
unaffected.

Note: Though the microkernel approach reduced the size of the kernel, there
isdtill anissue regarding which servicesare to beincluded in the kernel and
which services to be implemented at the user level.

2.3.6 Modules

Themodule-based approach empl oys obj ect-oriented programming techniques
to designamodular kernel. Inthisapproach, the operating system isorganized
around acorekernd and other |oadable modul esthat can belinked dynamically
withthekernel either at boot timeor at runtime. Theideaisto makethekernel
provideonly core services, whilecertain services can be added dynamically. An
example of amodul e-based operating systemis Solaris, which consistsof acore
kernd and savenloadablekernel modules: scheduling classes, filesystems, loadable
system cdlls, executableformats, streamsmodul es, miscellaneous, and deviceand
busdrivers.

Themodular approach issimilar to alayered approach in the sense that
each kernd module haswell-defined interfaces. However, itismoreflexiblethan
alayered approach as each moduleisfreeto call any other module.

Check Your Progress

1. Classify computer system based on the number of processorsusedina

system.
2. What are the two types of multiprocessor systems? Define any one of
them.

3. What are specia-purpose processors?

4. What problems may arise when resources are shared among several
programs?

5. Statethelimitationsof layered approach of the structure of an operating
sysem.

6. Definetheadvantagesof microkernel.

2.4 OPERATING SYSTEM OPERATIONS

Asdiscussed earlier, modern operating systemsareinterrupt driven. When there
ismanagement and coordination of activitiesto be performed, that is, no processes
for execution, no I/O activities, and no user to whom to respond, an operating
systemwill gointo the dormant modeand sitidle. Whenever an event occurs, itis
signalled by triggering an interrupt or atrap. For each type of interrupt, there
exists a code segment in the operating system that specifiesthe actionsto be
taken. The part of the operating system caled I nterrupt ServiceRoutine(I SR)
executesthe appropriate code segment to deal withtheissuedinterrupt.

Computer System
Architecture

NOTES

Self-Instructional
Material

27

Computer System
Architecture

28

NOTES

Self-Instructional

Material

In caseof multi programmed environment, the computer resourcesare shared
among severa userssimultaneousdly. Though the sharing of resources enhances
theresource utilization, it a so multipliesthe complications. An error in one user
program can adversely affect the execution of other programs. It may a so happen
that the erroneous program modifies another program, or dataof another program,
or the operating system itself. Without the protection against such typeof errors,
only one processmust be all owed to execute at agiven moment.

However, for effectiveand improvized resource utilization, it isimperative
to allow resource sharing among multiple programssimultaneoudy. Therefore, to
cope up with such an environment, an operating system should be fabricated
keepingin mind that anincorrect program doesnot adversely impact theexecution
of other programs, or an operating system itself.

Dual-M ode Operation

In order to ensure the proper functioning of the computer system, dual-mode
operator requiresan operating system and all other programsand their datato
ensurethat anincorrect program does not hamper the execution and, therefore,
must be protected against such programs. To achievethisprotection, two modes
of operations, namdy, user mode and monitor mode (el so known assuper visor
mode, system mode, kernel mode, or privileged mode) are provided for
supporting. A modebit isassoci ated with the computer hardwareto indicatethe
current mode of operation. The value “1’ indicates the user mode and ‘0’ indicates
the monitor mode. Whenthemodebitis1, itimpliesthat theexecutionisbeing
done on behaf of theuser, andwhenitisO, it impliesthat theexecutionisbeing
done on behalf of an operating system.

Originaly, when the system beginstoinitiaize (or booted), it isin monitor
mode. Then, the operating system isloaded and the user processesarestartedin
the user mode. When atrap or aninterrupt occurs, the hardware switchesfrom
user modeto the monitor mode by changing the modebit valueto 0. Therefore,
whenever an operating system hasthe control onthecompuiter, itisinthemonitor
mode. Contrary to this, whenever the control needs to be passed to the user
program, the hardware must switch themodeto the user mode before passing the
control totheuser program.

User process
user mode
User process System call Return from mode bit=1
executing g system call
AN Pl
N\
kernel
\ monitor mode
Execute mode bit=0
system call

Fig. 2.7 Dual-Mode Operation

Thisdua modeof operation hel psin protecting an operating system and the other
programs, from malicious programs. To achieve this protection, some of the
machine instructions that may cause harm are designated as privileged

ingructions. Theseprivileged ingructionsaredlowed to be executed only inthe
monitor mode. If an attempt ismadeto execute aprivileged instruction in user
mode, the hardwaretreatsit asanillegal instruction and trapsit to the operating
system without executingit. Theinstruction used to switch from kernel modeto
user modeisan exampleof aprivileged instruction.

Note: Recent operating systems, such asWndows 2000 and IBM OS2 provide
greater protection for an operating system by supporting privileged
instructions.

Timer

When aprocess starts executing, then it isquite possiblethat it getsstuck inan
infiniteloop and never returnsthe control to the operating system. Therefore, itis
necessary to prevent auser program from gaining the control of thesystemfor an
infinitetime. For this, atimer ismaintained, which interruptsthe system after a
specified period and checksthe sequence of events. Thisperiod can befixed or
variable. A variabletimer isusually implemented by afixed-rateclock and a
counter.

Itistheresponsibility of an operating system to set the counter whichis
decremented with every clock tick. Whenever, the value of counter reaches0, an
interrupt occurs. Inthisway, thetimer preventsauser program from running too
long. Initially, when aprogram starts, acounter isinitialized with the amount of
timethat aprogramisallowedto run. Thevalueof counter isdecremented by 1
with each clock tick and onceit becomes negative, an operating systemterminates
the program for exceeding theassigned timelimit. Notethat theinstructionsthat
modify theoperationsof thetimer arealso designated asprivileged instructions.

2.5 POST AND BOOTSTRAPPING

Power On Sdf Test (POST) isadiagnodtictool that providestheend user informetion
about thecomputer. Themotherboard Basic Input Output System (BIOS) contains
POST function. It provides BIOSre ated diagnostic information intwoformsand
thesetwo formsare known as POST codes and beep codes. When the Personal
Computer (PC) isbooted it first goesto the POST that buildsdiagnostic program.
It verifieswhether the hardwareisfunctioning properly beforethe BIOS startsthe
process of actua booting. It then continueswith other tests, such asthe memory
test. POST indicateswrong processin the machine. Beep patterns can be used
for diagnosing many hardware problemswith the PC. The actud patterns depend
on the compani eswhich manufactured the BIOS. Themost common exampleis
Award and American Megatrendsinc. (AMI) BIOS. Troubleshooting expert helps
userstofigureout the POST codesand solution for occurred problem. Sometimes,
POST errorsareconsdered asfatd error which hatstheboot processimmediately.
POST, ahardware detecting program applicablefor BIOSrequiresloading and
detecting firmware, includesthefollowing steps:

Computer System
Architecture

NOTES

Self-Instructional
Material 29

Computer System
Architecture

NOTES

Self-Instructional
30 Material

- A POST programisrunto test and detect ahardware program.

- When thehardwaretesting program sendsback an error valueit showsthe
output of error messages corresponding to the hardware testing program
toamemory.

- It rebootsthe computer, |oads next sequence of detecting firmwareto the
BIOS and runsthe hardwaretesting program of detecting firmware.

- It continuesto run the POST program when the hardwaretesting program
sendsback acorrect value. If the hardware testing program sends back an
error valuethen above processisrepeated.

POST codesaredifferent for al BIOS manufacturers. They providevisua
charactersreadout to show what stagethe POST isat. A POST cardisrequired
to see the coding that can be set in motherboard’s POST codes. The recent
motherboardsarefacilitated with built-in diagnostic capability tools. Itisa32-bit
cardthat isallotted in Peripheral Component Interconnect (PCI) slot onany type
of motherboard. The POST processes include verification test, register test,
controller test, receivedigitd signd path test and basic front end test to performits
task efficiently and successfully. The POST isinitiated, performed and compl eted
withinashort time, for exampleit can take three secondswhen power isswitched
on. Thetestsare performed after the POST at the discretion of an operator. This
processincludesatransmit test, atransducer e ement test, afront end voltagetest
and arecaivetest. Thevarious BIOS companies, such asAward, AMI and Phoenix
provide own beep codes. Begp codesoccur if motherboard hasaninbuilt spesker.
Most chassishave aspeaker connector soif the motherboard doesnot comewith
abuilt-in speaker it usually comes with a 4-pin speaker header. These codes
occur if the board ether functionsnormally or get problem abruptly with system
functioning. Inmost cases, onetimebeepisproduced if theboard POST isexecuted
successfully. There arefew beep codes cominginachart format. It iseasy and
necessary to analysethe beep codes. Beeping sound makesthe usersawareif the
computer doesnot boot successfully. Thus, beep sounds ensurethat CPU works
properly and POST performsitsfunctionsat thisstage. Following arethevarious
typesof POST method:

Microsoft POST Operating System: ThisPOST startsimmediately after
power isup. The Microsoft Windows X Poperating system sendsresultsto the
front panel for POST that worksas per ingtructionsbut theresultsarenot savedin
afile

Application POST: The application POST executeswhen therea-time
processor has booted up to check licensing requirements, missing Dynamic Link
Library (DLL) socket communications, with the real-time processor and the data
transfer processor.

Real-time Processor POST: Thereal-time processor POST isexecuted
fromitsown boot ROM. Its processed results are written in the power up status
file

Data Transfer Processor POST: The datatransfer processor POST is CO”DX% ,th’CSferfg
started by thereal -time processor. Its processed resultsarewrittenin the power et
up statusfile.

Hardware Control Processor POST: The real-time processor POST
communicateswith the hardware control processors. Red-time hardwareincludes
down converter, motherboard and Remote File Input Output (RFIO).

The POST was introduced with Reduced Instruction Set Computer
Operating System (RISC OS) 3.0 and |l ater versions of the OS. When computer
isswitched onthemachineverifiesthehardwarefor physical faultsbeforeusingit.
Then, it highlightsmajor errors so that hardware damage would not be possible.
ROM, RAM, VIDeo Controller (VIDC) and Input Output Controller (I0C) test
arecarried out in POST processinwhich the color of the screen becomesblue. A
limited memory testiscarried out smultaneously with asecond test of theVIDC
and |OC. When the screen again becomes purple the machineistested for an
ARM3 chip. At the end of the sequence the screen color is set to green for pass
statusor redfor fail status. If POST is passed successfully through all processes
the machine startsbooting and the RISC OS 3.0 welcome screenisseen. If any
test fal sthe screen remainsred and the disk drivelight blinksafault code. A short
flash is used for indicating a binary ‘0’ and a long flash for binary “1’. The bits are
groupedinto eight nibbles, i.e., blocksof four bitswith themost sgnificant bit fird.
Theblock congtituted by the lowest seven bitsisknown as statusword. Each bit
iscoded in hexadecima format asshowninTable2.1.

Table 2.1 Bit Values and Their Function

NOTES

Bit Value Function

00000001 POST is processed when power is on.
00000002 POST is processed by interface hardware.
00000004 POST is processed by test link.

00000008 POST is processed by long memory test.
00000010 POST isprocessed if ARM ID detected.
00000020 It disables long memory test.

00000040 POST is processed to detect 10 interfaces.

00000080 POST is processed to detect Virtua Random
Access Memory (VRAM).

Thefault code containsthe bitsvaluefrom bit-8 to bit-31. All bitsarenot used in
fault code. If the codeis marked asreserved RiscPC it means error number is
currently unassigned. It statesthat older hardwareisno longer sensiblefor the
new machines. Table 2.2 showsthebit valuesand their functions.

Self-Instructional
Material 31

Computer System
Architecture

32

NOTES

Self-Instructional
Material

Table 2.2 Bit Values and Their Functions

Bit Value Function

00000100 Thisbit valueis used for CMOS RAM checksum error.
00000200 This bit valueis used for ROM failed checksum test.
00000400 Thishit valueis used for failed MEMC CAM mapping.
00000800 Thisbit valueis used for failed MEMC protection.
00001000 Thisbit valueis used for reserved code on the RiscPC.
00002000 This bit valueis used for reserved code on the RiscPC.
00004000 This bit valueis used for Virq video interrupt.
00008000 Thisbit value is used for VIDC Sirg sound interrupt
00010000 CMOS unreadable.

00020000 RAM control linefailure.

00040000 RAM test failure.

00080000 A reserved code on the RiscPC.

The RiscPC (codenamed Medusa) is Acorn Computers’s next generation RISC
OS/Acorn RISC Machinecomputer launchedintheyear of 1994 which superseded
the Acorn Archimedes. Virq (video interrupt) and Sirq (sound interrupt) are
assembl ed with microprocessor. If POST isfailed with VIDC enhancer and machine
is continued to work systematically then Beginner’s All-purpose Symbolic
Ingtruction Code (BASIC) program runsand saves COM Ssettings. Thefollowing
codeiswrittenin BASIC languageto savethe CM OS settings:

REM saving POST CMOS settings

REM read byte

SYS “0S_Byte”,161, &BC TO, byte%

REM EOR byte for mask bit 1

byte% = byte% EOR $10000000

REM writing byte

SYS “0S_Byte”,161, &BC TO, byte%

END

Theresult of above codingisto save 1-bit whilepreserving the other bit whichis
used to changethe Complementary Metal Oxide Semiconductor (CMOS) setting.

Bootstrapping

In computing, booting (booting up) is a bootstrapping process that starts the
operating system when the user switches on acomputer. A boot sequenceisthe
initial set of operations that the computer performs when switched on. The
bootloader typically loadsthe main operating system for the compuiter.

One can boot an operating system intwo conditions: (i) Wherethereisa
sngleOSingdled and (i) Wherethereare multiple OSsinstal led on the computer.

Single OS Boot Process Computer System
Architecture

Whenever a computer is turned on, BIOS takes control and performs many
operations, such as checking hardware and ports and then loads the Master Boot
Record (MBR) programinto the memory (RAM). NOTES
Inthe next step, the M BR takes control of the booting process.
When only one OSisinstalled, thefunctionsof MBR areasfollows:
- Theboot process starts by executing acodein thefirst sector of the
disk.
- MBR looks over the partition table to find the *Active Partition’.
- Control is passed to that Partition’s Boot Record (PBR) to continue
booting.
- The PBR locates the system specific boot files, such as Win98’s i0.sys
or WinXP’s ntoskrnl.

- Thentheseboot files continue the process of loadingandinitializing
therest of the OS.

Multiple OS Boot Process

When therearemultiple OSs, beit multiple Windows or Windowswith Linux, the
booting processisdightly different. There can betwo different types of booting
processesin amultiple OS environment, the Microsoft way and non-Mi crosoft
way or third party boot |oader way.

2.6 KERNEL

Kernel isthefundamental part of an operating system. It isapiece of software
used for providing secure access to the machine’s hardware for various computer
programs. Since, there are many programswhich are used to accessthe hardware
islimited to the kernel and also responsiblefor deciding when and how long a
program should be ableto make use of apieceof hardwarein atechnique. This
processisknown as multiplexing. Accessing the hardwaredirectly isacomplex
task therefore the kernel is implemented for hardware abstractions. These
abstractionsareaway of hiding thecomplexity and providing aclean and uniform
interface to the underlying hardware which makes it easier on application
programmers. Thekernel isthe central part of an operating system that directly
controlsthe computer hardware. Usudlly, thekernel isthefirst of theuser installed
software on acomputer but booting directly after the BIOS. Operating system
kernelsare specific to the hardware onwhich they arerunning thusmost operating
systemsaredistributed with different kernel optionsthat are configured when the
systemisingdled. Changing mgor hardware components, such asthemotherboard,
processor or memory often requires akernel update. The two major types of
kernelsavailablein the computer marketsaretheWindowskerne and the UNIX
likekernels. TheWindowskernel isavailable only with the series of Microsoft

Self-Instructional
Material 33

Erommthlé::?L r%’Stem Windows operating systems. UNIX likekernel isafamily of operating system
kernels that are based upon the original Bell Labs UNIX operating system.
Common examplesof UNIX likekerndsaretheLinux kernd, Berkeey Software
Distribution (BSD), Mac OS and Solaris. Following arethefunctionsof kerndl:
- Thefunctionof kernel intheoperating systemistoimprove system security
and performance.

- Kernel isusedtoincreasethe system stability and security.

- Microkernel, oneof the primetypesof kerndl, is often used in embedded
robotic or medica computers because most of the OS componentsreside
intheir own private or protected memory space.

- Exokernel whichisalso one of the primetypes of kernel used for avery
low level interface to the hardware lacking any of the higher level
functionalitiesof other operating systems.

- Thegod of kernd isto alow an application to request the specific piece of
memory and specific disk block. Themain function of kernel isto check
whether the requested resourceisfree and the applicationisallowed to
accessit.

Figure 2.8 showsthe two modes of operating system known asuser mode and
kernel mode. Both modes providethe system servicesfor HardwareAbstraction
Layer (HAL) aswell asfor microkernd too.

NOTES

Write

Login
) Wmle Procedure
XWing

net use Secunty
Subsystem trueblue

Word 7

0s/2

m _ Subsystem
= POSIX a |} ¥* >
Subsystem " wina2 Subsystem
User Mode
Kernel Mode
System Services l :
1/0 Object Security Process Local Virtual Graphics
: Manager Manager Reference Manager Procedure Memory Subsystem
: | Cache Mgr Manager Call Manager
' Facility Window
. | File System Manager
Drivers
Graphics
Network Device
Drivers Interface
Microkernel |
Device Graphics
Drivers | Hard Ab L 1 Device
ardware Abstraction Layer . Dri
‘"-. _ADrivers

Hardware

Self-Instructional Fig. 2.8 Kernel in an Operating System

34 Material

Thestructure of operating systemisseparated into two sectionsinwhich the upper
section contai nscomponentsthat run inuser modeand thel ower section containing
thosethat runinkernel mode. Theheart of thevarioustypesof operating systems,
such asLinux or Windows consists of the modulesrunning in kernel mode. Most
interactionswith the computer hardwaretake placeviathe HAL athough some
devicedriversaso directly accessthe hardware. Thecore of the operating system
referstokernd whichisthemicrokernd. It overseestheworking of al of the other
modules and handles communications between them and the HAL (refer
Figure2.8). Inthe other componentsof thekernel, each hasasingle specificarea
of responsibility. An1/0O manager controlsmost input and output on the system.
Therole of object manager isto create, modify and del ete the system objects.
Datastructures correspond to aspecificinstance of aresource, for exampleafile,
aprocessor aport. The Security Reference Manager (SRM) isresponsiblefor
enforcing system security settings by granting or denying accessto objects and
system resources upon request from the object manager. Thisprocessrelieson
data structuresknown as Security Access Tokens (SAT). The Process Manager
(PM) creates and manages system processes but process scheduling ishandled
by themicrokernel. TheLocal Procedure Call (LPC) facility isresponsiblefor
communi cation between di stinct processes known asinterprocess communication.
The Virtual Memory Manager (VMM) handles the allocation and use of the system’s
memory. The Graphics Subsystem (GS) provides servicesrequired for interfacing
tographica displays.

Check Your Progress
7. Namethetwo modesrequired for the protection in dual-mode operation
of an operating system?

8. Definethetimer and varigbletimer.

9. What istheuse of theinput devices?
10. What ismeant by the POST?
11. What al POST processincludes?
12. How dowedefinetheterm booting?
13. Statetheconditionsrequired for booting the system.
14. Definekernd.

2.7 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Depending on the number of processors used in a system, a computer
system can bebroadly categorized mainly into oneof thetwo types; single
processor system or multiprocessor system.

Computer System
Architecture

NOTES

Self-Instructional
Material 35

Computer System
Architecture

NOTES

Self-Instructional
36 Material

. Multiprocessor sysemsareof twotypes, namey, symmetric and asymmetric.

In symmetric multiprocessing systems, al the processorsareidentical and
performidentical functions. Each processor runsan identical copy of the
operating system and these copiesinteract with each other asand when
required. All processors in symmetric multiprocessor system are peers—no
master—slave relationship exists between them.

. Special-purpose processors may be in the form of device-specific

processors, such asdisk, keyboard, etc., or in mainframes, they may bel/
O processors that move dataamong system components. Note that the
special-purpose processors execute alimited instruction set and do not
executeinstructionsfrom the user processes.

. Though the sharing of resourceshasimproved theresource utilization, it

hasa soincreased theproblems. Insingle-user system, anerrorinacurrently
running program can cause problemsfor that programonly asitistheonly
active program at that point of time. However, when the resources are
shared among severd programs, then an error in one program can adversdy
affect theexecution of other programs. It may aso happen that an erroneous
program modifies another program, or data of another program, or the
operating systemiitsdif.

. Thelayered approach has somelimitationstoo, which areasfollows:

- Aseachhigher-level layer isallowedto useonly itslower-level layers,
thelayersmust be defined carefully. For example, thedevicedriver of a
physica disk must bedefined at alayer bel ow theone containing memory-
management routines. Thisis because memory management needsto
usethephysical disk.

Thetimetakenin executingasystem cal ismuch longer ascompared to
that of non-layered systems. Thisisbecause any request by theuser has
to passthrough anumber of layersbefore the action could betaken. As
aresult, system overheadsincrease and efficiency deceases.

. Themain advantage of amicrokernd approach isthat the operating system

can be extended easily; the addition of new servicesin the user space does
not causeany changesat thekernel level. In addition, microkernel offers
high security and reliability asmost servicesare running as user processes
rather than kernel processes. Thus, if any of therunning servicesfail, the
rest of the system remains unaffected.

. To achievethisprotection, two modes of operations, namely, user mode

and monitor mode (&l so known as supervisor mode, system mode, kernel
mode, or privileged mode) are provided for supporting. A mode bit is

10.

11.

12.

13.

14.

associated with the computer hardwareto indicate the current mode of
operation. The value “1” indicates the user mode and ‘0’ indicates the monitor
mode. Whenthemodebitis1, itimpliesthat theexecutionisbeing doneon
behdf of theuser, and whenitisO, itimpliesthat theexecutionisbeing done
on behaf of an operating system.

. A timer ismaintained, which interruptsthe system after aspecified period

and checksthe sequence of events. Thisperiod can befixed or variable. A
variabletimer isusualy implemented by afixed-rate clock and acounter.

. Input devicesareused to convert our information or datainto aform, which

can be understood by the computer.

Power On Self Test (POST) isadiagnogtictool that providesthe end user
information about the computer. The motherboard Basic Input Output
System (BIOS) contains POST function. It provides BIOS related
diagnostic information in two forms and these two forms are known as
POST codes and beep codes.

ThePOST processesinclude verification test, register test, controller test,
and receivedigital signal path test and basic front end test to performits
task efficiently and successfully. The POST isinitiated, performed and
completed within ashort time, for exampleit can takethree secondswhen
power is switched on. The tests are performed after the POST at the
discretion of an operator.

Booting (booting up) isabootstrapping processthat startsthe operating
system when the user switcheson acomputer. A boot sequenceistheinitia
set of operations that the computer performs when switched on. The
bootl oader typically loadsthe main operating system for the compuiter.

One can boot an operating systemintwo conditions:
(i) WherethereisasingleOSinstaled and
(i) Wheretherearemultiple OSsinstalled on the computer.

Kernel isthe fundamental part of an operating system. It is apiece of
software used for providing secure access to the machine’s hardware for
various computer programs. Thekernel isthe central part of an operating
system that directly control sthe computer hardware.

2.8

SUMMARY

- Depending onthe number of processorsused inasystem, acomputer system

can bebroadly categorized mainly into oneof thetwo types: single-processor
System or multi processor system.

Computer System
Architecture

NOTES

Self-Instructional
Material

37

Computer System
Architecture

NOTES

Self-Instructional
38 Material

- Single-processor systems consist of one main CPU that can execute a

general-purposeinstruction set, which includesinstructions from user
processes. Other than the one main CPU, most systems also have some
Special-purpose processors.

- The multiprocessor systems (al so known as parallel systemsor tightly

coupled systems) consist of multiple processorsin close communication
in asensethat they share the computer bus and even the system clock,
memory, and peripheral devices.

- Themain advantage of multiprocessor systemsisthat they increasethe

system throughput by getting morework donein lesstime.

- Multiprocessor systems are of two types, namely, symmetric and

asymmetric. In symmetric multiprocessing systems, al the processorsare
identical and performidentica functions.

- Every operating system hasits owninternal structureintermsof file

arrangement, memory management, storage management, etc. The
performance of the entire system dependsonits structure.

- TheArithmeticand Logical Unit (ALU) and the Control Unit (CU) of a

computer system arejointly known asthecentral processing unit.

Therearevarioustypesof I/O devicesthat are used for different types of
applications. They are a'so known as peripheral devices because they
surround the CPU and make acommuni cati on between computer and the
outer world.

- MS-DOSisan operating system designed with thisapproach in view. It

wasinitidly designed to besmpleand smdl insizehaving limited scope, but
with time, it outgrew its scope. Designed with aview to providing more
functiondity withinlessspace; it wasnot carefully divided into modules.

- The operating system provides applicationswith avirtual machine. This

type of situation isanal ogousto the communication line of atel ephony
company which enabl es separate and i sol ated conversationsover thesame
wire(s). Animportant aspect of such asystemisthat the user canrunan
operating system asper choice.

- Inlayered approach, the operating system is organized asahierarchy of

layerswith each layer built on thetop of thelayer below it. Thetopmost
layer isthe user interface, whilethe bottommost layer isthe hardware. Each
layer hasawel|-defined function and comprisesdatastructures and aset of
routines. Thelayersare constructed in such amanner that atypical layer
(say, layer n) is able to invoke operations on its lower layers, and the
operations of layer n can beinvoked by itshigher layers.

- “THE system’ was the first layer-based operating system developed in 1968

by E.W. Dijkstraand his students. Thisoperating system consisted of six
layers (0-5) and each layer had apre-defined function.

- Kerne isthecentra part of an operating systemwhich directly controlsthe Compurter System
Architecture
computer hardware.

- Themonolithic kernel runs every basic system servicelike scheduling,
interprocess communication, file management, process and memory
management, device management, etc., inthekernd spaceitsalf. However,
theinclusion of al basic serviceswithinthekerndl spaceincreasesthesize
of thekerndl.

- Anexampleof amodul e-based operating systemis Solaris, which consists
of acorekernd and seven loadablekernel modules: scheduling classes, file
systems, loadable system calls, executable formats, streams modules,
miscellaneous, and deviceand busdrivers.

- The module-based approach employs object-oriented programming
techniquesto designamodular kernel.

- When thereismanagement and coordination of activitiesto be performed,
that is, no processesfor execution, no 1/O activities, and no user to whom
to respond, an operating systemwill gointo the dormant modeand sitidle.
Whenever anevent occurs, itissignaled by triggering aninterrupt or atrap.
For each type of interrupt, there exists acode segment in the operating
system that specifies the actions to be taken. The part of the operating
system called Interrupt Service Routine (I1SR) executesthe gppropriate code
segment to ded withtheissued interrupt.

- Toachievethisprotection, two modes of operations, namely, user mode
and monitor mode (al so known as supervisor mode, system mode, kernel
mode, or privileged mode) are provided for supporting. A mode bit is
associated with the computer hardwareto indicate the current mode of
operation. The value “1” indicates the user mode and ‘0’ indicates the monitor
mode. Whenthemodebitis1, itimpliesthat the executionisbeing doneon
behdf of theuser, and whenitisO, itimpliesthat theexecutionisbeing done
on behaf of an operating system.

- Toachievethisprotection, someof themachineingructionsthat may cause
harm aredesignated as privileged instructions.

- A timer ismaintained, which interruptsthe system after aspecified period
and checksthe sequence of events. Thisperiod can befixed or variable. A
variabletimer isusually implemented by afixed-rate clock and acounter.

- Power On Self Test (POST) isadiagnostic tool that providesthe end user
information about the computer. The motherboard Basic Input Output
System (BIOS) contains POST function. It provides BIOS related
diagnostic information in two forms and these two forms are known as
POST codes and beep codes.

- In computing, booting (booting up) isabootstrapping processthat starts
the operating system when the user switcheson acompuiter. A boot sequence
istheinitid set of operationsthat the computer performswhen switched on.
Thebootloader typicdly loadsthe main operating system for the computer.

NOTES

Self-Instructional
Material 39

Computer System
Architecture

NOTES

Self-Instructional
40 Material

- Whenever acomputer isturned on, BIOStakes control and performsmany

operations, such as checking hardware and portsand then | oadsthe M aster
Boot Record (MBR) programinto thememory (RAM).

- Kernd isthefundamenta part of anoperating system. Itisapieceof software

used for providing secure access to the machine’s hardware for various
computer programs.

- Thegod of kernd isto alow an application to request the specific piece of

memory and specific disk block. Themain function of kernel isto check
whether the requested resourceisfree and the applicationisallowed to
accessit.

- Thestructure of operating system isseparated into two sectionsinwhich

the upper section contains componentsthat runin user modeand thelower
section containing thosethat runin kernel mode. The heart of thevarious
types of operating systems, such as Linux or Windows consists of the
modulesrunningin kerne mode.

2.9

KEY WORDS

- Single-processor system: System one main CPU that can execute a

general-purpose instruction set, which includes instructions from user
Processes.

- Multiprocessor system: A system with multiple processors in close

communication in asensethat they share the computer busand eventhe
system clock, memory, and peripherd devices.

- Master processor: A processor that controlsthe entire system.
- Timer: Interrupts the system after a specified period and checks the

sequence of events.

- Kernd: Itisapieceof softwareused for providing secure accessto the

machine’s hardware to various computer programs.

- Power on self-test: It is adiagnostic tool that provides the end user

informati on about the compuiter.

2.10 SELF-ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1. What ismeant by single-processor systems?

2. Definesignificanceof dave processorsand master processor.

. What canbeincludedintheinternal structureof an operating system? CO”DXrtg] it%’i‘;‘g
. Statefew advantages of thevirtual machineand kernd.

. Definemonolithic kernd inan operating system.

. What isthesignificanceof interrupt servicerouting? NOTES

. How dowedefineaprivilegedinstructions?

. Givefew examplesof input and output devices used for different types of
aoplications.

9. Define POST.
10. How does abootstrapping processworks?
11. What isthegod of akernd inan OS?

0 N o O A W

Long-Answer Questions

1. Describesingle-processor and multiprocessor systems.

. What isthedifference between user interface system and protection sysem?
. Explainbriefly about the history and structure of an operating systems.

. What isSPOOL.ing? Explainitsfunctionsand gpplications.

. Computethefunctionsof timeshared sysemsaswel | assingleuser sysems?

. Elaborate on the advantages and disadvantages of operating system
operations.

7. Discuss briefly about the architecture of the virtual machine
multiprogramming.

8. Differentiate between POST and BIOSwith thehel p of exampl es.
9. lllustrateonthedefinitionsand functionsof kernd.

o O A WD

2.11 FURTHER READINGS

Silberschatz, Abraham, Peter B. Galvin and Greg Gagne. 2008. Operating System
Concepts, 8th Edition. New Jersey: JohnnWiley & Sons.

Tanenbaum, Andrew S. 2006. Oper ating Systems Design and | mplementation,
3rd Edition. New Jersey: Prentice Hall.

Tanenbaum, Andrew S. 2001. Modern Operating Systems. New Jersey: Prentice
Hal.

Deitel, Harvey M. 1984. An Introduction to Operating Systems. Boston (US):
Addison-Wedey.

Self-Instructional
Material 41

Computter System Stdlings, William. 1995. Operating Systems, 2nd Edition. New Jersey: Prentice
Architecture Hall

Milenkovic, Milan. 1992. Operating Systems. Conceptsand Design. New York:
McGraw Hill Higher Education.

Mano, M. Morris. 1993. Computer System Architecture. New Jersey: Prentice
Hdl Inc.

NOTES

Self-Instructional
42 Material

System Structure

UNIT 3 SYSTEM STRUCTURE

Sructure NOTES
3.0 Introduction
3.1 Objectives
3.2 Operating Systems Structures
3.3 Systems Components
331 Process Management System
332 Process Scheduling System
333 Memory Management System
334 FileManagement System
335 Input/Output System Management System
336 Networking System
3.3.7 Protection System
338 User Interface System
3.4 Operating System Services
35 SystemCals
3.6 System Programs
3.7 Operating System Design and Implementation
3.8 Answers to Check Your Progress Questions
3.9 Summary
3.10 Key Words
311 Sef-Assessment Questions and Exercises
3.12 Further Readings

3.0 INTRODUCTION

The components of modern operating systems are process management, main
memory management, file management, 1/O system management, secondary
management, networking, protection system and command-interpreter sysem.A
filemanager or file browser isacomputer program that providesauser interface
towork with file systems. The device manager alows usersto view and control
the hardware attached to the computer. A processisaprogram in execution. A
process needs resourcesincluding CPU time, memory, filesand 1/0O devicesto
accomplishitstask. Theseresourcesare either given to the processwhenitis
created or whenitisrunning. When the process compl etes, the OSreclamsall the
resources. An operating system isacomplex and normally huge software used to
control and coordinate the hardwareresourceslike CPU, memory and I/O devices
to enableeasy interaction of the computer with human and other gpplications. Ina
computer system, users have to run their programs, store programs or data
permanently on secondary storage devices, and have to determine the
mal functioning programsand | ocate theinformation needed toidentify thereasons
for errors. Processes (running programs) may want to communicate with each
other for sharing of dataand for cooperated execution.

Self-Instructional
Material 43

SystemSructure And processes may need to read datafrom input deviceslike keyboard,
and write datato output deviceslike printer and monitor. A system call isthe
invocation of an operating sysemroutine. System calsprovidean interface between
the processes of an operating system. Thesecallsallow user-level processesto

NOTES request someservicesfrom the operating system which processitsdf isnot allowed
to do.

Inthisunit, youwill sudy thebas csof operating system structures, operating
system services, system calls, system programs, operating system design and
implementations.

3.1 OBJECTIVES

After going throughthisunit, youwill beableto:
- Describethebasicsof operating system structures
- Understand the concept and functions of operating system services
- Discuss about theterms, such as system callsand system programs

- Andysethe advantagesand disadvantages of operating system designand
implementations.

3.2 OPERATING SYSTEMS STRUCTURES

Dueto thecomplex nature of themodern operating systems, itis partitionedinto
smaller components. Each component performstheinput and output functions.
The components of modern operating systems are process management, main
memory management, file management, I/O system management, secondary
management, networking, protection system and command-interpreter system.
Figure 3.1 illustrates the components used in operating systems structure.

File

aAnacer
Process, Thread & Manager

Resource Managel

Memory Device
Manager Manager
e — i

Processor(s) Main Merory Devices I

Fig. 3.1 Components used in Operating Systems Structure

Self-Instructional
44 Material

A filemanager or file browser isacomputer program that providesauser interface SystemSructure
towork with filesystems. The device manager alows usersto view and control

the hardware attached to the computer. A processisaprogram in execution. A

process needsresourcesincluding CPU time, memory, filesand 1/0 devicesto

accomplishitstask. Theseresources are either given to the processwhenitis NOTES
created or whenitisrunning. When the process compl etes, the OSreclaimsall
theresources. The operating systemisresponsi blefor thefollowing activitiesin
connectionswith memory management:

- It keepstrack to check which parts of memory are currently being used
and by whom.

- It decideswhich processes are used to | oad when memory space becomes
avalable

- It alocatesand de-all ocates memory space as needed.

Computerscan goreinformation on severd different typesof physica media,
for example magneti c tape, magnetic disk, Compact Disk or CD, etc. For fast use
of thecomputer system, the OS providesauniform logical view of information
sorage. Thekerne isthemain component of most computer operating systems. It
worksasabridge between applicationsand dataprocess ng doneat the hardware
level. The function of kernel includes managing the system’s resources, and
communicating between hardware and software components. Usudly asabasic
component of an operating system, akernd can providethelowest level abstraction
layer for the resources especially processors and I/O devices that application
software must control to performitsfunction. It typically makesthesefacilities
availableto gpplication processesthroughinterprocess communi cation mechanisms
and system cdls. Operating system structureisdesigned to decomposeinto smdler
componentswith well-defined i nterfaces and dependences using layered gpproach,
microkernel s, modules and virtud machines. Thefeaturesand functionsof virtua
machineare discussed in subsequent section.

Kernel Approach

- Kernel liesbelow system call interface and abovethephysical hardware.

- It provideslarge number of functions, such as CPU scheduling, memory
management, 1/0O management, synchroni zation of processes, interprocess
communication and other operating system functions.

CPU and I/0O Sructure

The Arithmetic and Logic Unit (ALU) and the Control Unit (CU) of acomputer
system arejointly known asthe Central Processing Unit or CPU. You may call
CPU asthebrain of any computer system. It takesall mgor decisions, makesall
sortsof ca culationsand directsdifferent partsof thecomputer functionsby activating
and controlling the operations.

Self-Instructional
Material 45

SystemSructure For acomputer to start running, it needsto haveaninitia programto run.
Thisinitid program, aso known asabootstrap program, tendsto besimple. Itis
stored in CPU registers. Theroleof theinitia program or the bootstrap program
isto load the operating system for the execution of the system. The operating

NOTES system starts executing the first process, namely ‘init’, and waits for some event to
occur. Event isknown to occur by aninterrupt from either the hardware or the
software. Hardware caninterrupt through system buswhereas software through
sysemcdl.

When aCPU isinterrupted, it immediately stopswhatever itisdoing and
returnsto afixed location. Thisfixed location usudly containsthe starting address
wherethe serviceroutinefor theinterrupt islocated.

/O Sructure

There are various types of 1/0O devices that are used for different types of
applications. They are a so known as periphera devicesbecausethey surround
the CPU and make acommunication between computer and the outer world.

I nput Devices: Input devicesare necessary to convert our information or data
into aformwhich can be understood by the computer. A good input device should
providetimely, accurate and useful datato the main memory of the computer for
processing. keyboard, mouseand scanner arethe most useful input devices.

Output Devices: Visud Display Unit (VDU), termina sand printersarethemost
commonly used output devices.

Virtual Machines

The operating system provides applicationswith avirtual machine. Thistype of
Stuation isana ogousto the communication line of atel ephony company, which
enables separate and i sol ated conversations over the samewire(s). Animportant
agpect of suchasystemisthat theuser canrun an operating systlem of his’her choice.

Thevirtua machine concept can bewe | understood by understanding the
difference between conventional multiprogramming and virtual machine
multiprogramming. In conventiona multiprogramming, processesaredlocated a
portion of thereal machineresources, i.e., aresourcefromthe samemachineis
distributed among several resources (Refer Figure 3.2(a)).

Conventional Multi-
programming OS

dERNAN

JOB 1 B2 | | T JOB N

Fig. 3.2(a) Conventional Multiprogramming

Self-Instructional
46 Material

Inthevirtua machinemultiprogramming system, asinglemachinegivesanilluson SystemSructure
of many virtual machines, each of themhavingitsown virtua processor and sorage
gpace which can be handled through process scheduling (Refer Figure 3.2(b)).

Virtual machine NOTES
Operating System

Virtual machine 1 Virtual machine 2 Virtual machine 3

Fig. 3.2(b) Mirtual Machine Multiprogramming
Advantages

Following aretheadvantagesof virtua machine:

- Each user isallocated amachine which &iminates mutual interference
between users.

- A user can select an OS of his/her choicefor execution. Hence, the user
can smultaneoudly usedifferent operating systems on the same computer
sysem.

3.3 SYSTEMS COMPONENTS

An operating systemisacomplex and normaly huge software used to control and
coordinate the hardware resourceslike CPU, memory and I/0 devicesto enable
easy interaction of the computer with human and other applications. The objects
or entitiesthat an operating system manages or deal s with include processes,
memory space, files, 1/0 devicesand networks. Let usfirst briefly describe each
of theseentities:

- Process: A processissimply theprogram in execution. For every program
to execute, the operating system creates a process. A process needs
resourceslike CPU, memory and I/O devicesto executeaprogram. These
resources are under the control of the operating system. In acomputer,
therewill bemany programsin thestate of execution; hencealarge number
of processes demanding variousresourcesare al so needed to bemaintained
and managed in an operating system. When the execution isfinished, the
resourcesheld by that processwill bereturned back to the operating system.

- Memory Space: Asmentioned earlier, the execution of aprogram needs
memory. The availablememory isdivided among various programsthat are
needed to execute s multaneoudy (concurrently) in atimemultiplexed way.
In normal type of memory, at atime only one memory location can be
accessed. So, inauniprocessor environment, becausethe secondary storage
devicesaremuch g ower than main memory, the programsto be executed

Self-Instructional
Material 47

SystemSructure concurrently areloaded into memory and kept ready awaiting the CPU for
fast overall execution speed. Thememory is space multiplexed whichis
used toload and execute morethan one programin atimeinterleaved way.
Evenif morethan one CPU isavailable, at atimeonly one program memory

NOTES areacan beaccessed. However, ingtruction that doesnot need main memory
access (access can be from local memory or from CPU cache) can be
executed simultaneoudy inamultiprocessor scenario.

- Files: Files are used to store sequence of bits, bytes, words or records.
Filesarean abstract concept used to represent storage of logicaly similar
entitiesor objects. A filemay beadatafile or aprogramfile. A filewith no
format for interpretingitscontent iscaled aplain unformattedfile. Formatted
file content can beinterpreted and ismore portable asone knowsin what
way the datainsideisstructured and what it represents. Exampleformats
are Joint Photographic Experts Group or JPEG, Moving Picture Experts
Group or MPEG Graphicsinterchange Format or GIF, Executableor EXE,
MPEGAudio Layer 11l or MP3, etc.

- 1/0O Devices: Theinput/output devicesof acomputer include keyboard,
monitor, mouse, pen, joystick, scanner, printer, modem, secondary storage
deviceslike hard disk, floppy disk, CD (Compact Disk) ROMs (Read
Only Memory), etc. Primary memory likeRAM isvolatile and the dataor
program stored there will be lost when we switch off the power to the
computer system or when we shutdown it. Secondary storage devicesare
needed to permanently preserve program and data. Also, asthe amount of
primary storagethat can be provided will belimited dueto reasonsof cost,
asecondary storageis needed to store the huge amount data needed for
variousapplications.

- Network: Network istheinterconnection system between one computer
and the other computerslocated in the same desk/room, same building,
adjacent building or in any geographical location over theworld. We can
have wired or wirel ess network connectionsto other computerslocated
anywhereintheworld.

Fromthediscussonabove, itisclear that the operating sysem hasvariousfunctions
to carry out. So, the operating system cons sts of many subsystemsto accomplish
itsvarioustasks. The mgor componentsor subsystems needed for an operating
sysemareasfollows:

- Process Management System

- Process Scheduling

- Memory Management System

- Fileand Secondary Storage Management System
- 1/0O System Management System

- Networking System

Self-Instructional
48 Material

- Protection System System Structure
- User Interface System

Thefollowing subsections describe each of the above subsystems.

3.3.1 Process Management System NOTES

An operating system has to provide many services for the execution of user
programsand system programs. Programs are executed as processes. A process
isaprogram in execution. A program can be executed by many processes on
behalf of different users. For example, aC++ compiler will beexecuted by many
usersasdifferent processes. A running program has various datastructuresto
represent its context. Code, data, Program Counter (PC), registers, openfiles
and other resourcesin use atogether represent the context. A process encapsul ates
the whole context of a running program. Once the execution of aprocessis
completed, it should beremoved, or killed or deleted from the system. A process
requesting for theresourcethat isnot currently available must be madeto wait or
suspended and it must be resumed when theresourceisavailable. Morethan one
process sharing resourcesmust be synchronized for theright and consi stent use of
such shared resources. A process should not be allowed to wait for aresource
that isaready held by another waiting processinacircular chain. In some cases,
ajob hasto be executed asmultiple cooperating processes. So, for the execution,
control and deadl ock-free cooperation of processes, the process management
subsystem must provide servicesfor thefollowing:

- Creation and del etion of processes
- Suspension and resumption of processes
- Synchronizing execution of processes
- Communi cation between processes
- Preventing and handling deadlock situations
M odern operating systems a so support the concept of threadswhich are
lightweight processes. A process may have many threadstoimprovetheresponse

time of an application. Inthat case, servicessimilar to that needed for the process
management arerequired for thread management.

3.3.2 Process Scheduling System

Inacomputer system, therewill be many processesin aready statewaiting for the
CPU for execution. When and in what order to alocate the CPU for different
processes, intheready state, iscalled process scheduling or CPU scheduling.
Thisscheduling isdone based on various scheduling algorithms used for this
purpose. Inamultiuser computer system, thenext processto beexecuted issdl ected
based on the scheduling a gorithm. A processwill be allocated the CPU for a
duration that isalso dictated by the scheduling al gorithms. After the expiry of
permitted time, ahardware timer interruptsthe current execution to enablethe

Self-Instructional
Material 49

System Structure

50

NOTES

Self-Instructional
Material

operating system to sel ect the next processto execute based on the scheduling
agorithm. The context of the outgoi ng processmust be saved and the context of
the new incoming process must be restored before handing over the CPU tothe
newly sdlected process. Thisiscaled acontext switch. Therearevariousscheduling
algorithmsthat arein usefor optimizing the performance of computer systems.
Common among themare Round Robin, firg-in-firs-out, shortest timefirst, shortest
remai ning time next, etc. So, the process scheduling subsystem must providethe
following functionsfor theexecution of programs:

- Servicesfor selecting next processto execute based on some scheduling
dgorithm

- Context switching

- Regtarting thetimer tointerrupt at the end of thetime duration alotted for
the new process

- Transfer control tothe new process
3.3.3 Memory Management System

Themain memory isarranged as an array of bytesor words as dictated by the
low-leve architecture of aCPU. Every memory location has different addresses.
Theseaddresses can befrom zero to the size of memory that can beaccommodated
inthe CPU. Thisiscalled the address space of aCPU. These arethe memory
addressesthat the CPU can accessdirectly. Asmentioned earlier, inamultiuser
system, therewill be many programsloaded and existing simultaneously inthe
main memory. The available main memory will beallocated to such programs/
processes. Processes may al so request memory during the execution time. So,
the operating system must allocate memory to satisfy the needs of different
processes out of the free memory available at any time. When the processes
completetheir execution, the memory must betaken back to thefreememory list.
When sufficient main memory isnot avail able, the memory occupied by some of
the waiting processes or a part of the executing processes may be written to
secondary storage, and the memory thusfreed may be allocated to the demanding
processes. So, the memory management subsystem hasto providethefollowing
facilitiesfor theexecution of programs.

- To keep track of the amount of memory spaces allocated to different
processes and the addresses of such memory spaces.

- Allocate main memory when requested.
- De-allocate memory used by the processwhen it terminatesand add it to
thefree spacelist for future allocationto other processes.
3.3.4 File Management System

Fileisan abstract concept for recoding thememory | ocationswheretheinformation
isrecorded on storage media. Filesmay be considered asinformation folders.

Informationisrecorded in secondary storage as sequences of bits, bytes, words
or records. Filesare stored on secondary storage media. Hard disk (magnetic
disks), magnetic tapes and optical disks (CD-ROM, Digital Versatile Disk or
DVD, etc.) areexamplesof secondary storage devices. Different storage devices
are characterized by speed, capacity, datatransfer rate and accessmethods. Files
are organizedinto directoriesbased on theinformation content or the purposefor
whichitisused, or based onthe owner name. Thevariousfunctionsthat afile
management subsystem must provideareasfollows:

- Cresation and ddetion of files.
- Creation and deletion of directories.
- Opening, reading, writing and gppending filesand directories.

- Allocation of storage blocksto filesand deall ocation of storage blocksto
freelidt.

- Keepingtrack of the usage of storage by files.
- Backingupfiles.
3.3.5 Input/Output System Management System

Usersof acomputer system interact mainly through 1/0 devices. Through the
keyboard and mouse we can apply inputs and commands to the computer, and
through the monitor we can get back the responsesfrom thecomputer. 1/0 devices
normally communicate with the computer through hardware-level interrupts. The
operating system hasto respond to such events by executing interrupt service
routines stored as part of itscode. The I/O subsystem provides utilitiesfor all
types of communication needed with the /O devices. Moreover, every device
typewill haveitsown specia program called devicedriver for interaction and
communi cation withthe operating system.

3.3.6 Networking System

M odern operating systems support execution of programsin aremote computer
connected through communication network. Such asystemiscalled network
operating system. Network operating systems areloosdly coupled software on
loosely coupled hardware (independent computers connected to the network).
Suchasysemmust provideremotel ogin facility for executing programsand remote
copy command facility.

Itisa so possibleto haveasystem with tightly coupled software on loosdly
coupled hardware. Such a system is called distributed operating system. A
distributed operating system creates the impression of one large uni processor
computer out of many networked computers. A singleoperating systemrunsinal
the computersand they aretightly coupled through software. Filesinsuchasystem
appear to have the same name (can have different access privileges) to different
usersworkingin any of thenetworked computers. A distributed sysem must provide
asingleglobal interprocess communication mechanism so that any processcan

System Structure

NOTES

Self-Instructional
Material

51

System Structure

52

NOTES

Self-Instructional
Material

communicate with any other process. Distributed operating system must also
provide schemesfor global protection of files.

3.3.7 Protection System

Inamultiuser system, therewill be many usersexecuting programssimultaneoudly/
concurrently. Also different userswill havetheir own resourceslikeprogramsand
datafiles. Someusers may permit their resourcesto be shared by other usersina
controlled way. An operating sysem must providefacilitiesfor protecting theshared
useof resourceslike programsand files, and a so providefacilitiesfor controlled
accessrightsto such resources by the users. The protection system must ensure
that each resource of the system isaccessed correctly and only by those processes
that arealowed to do so.

3.3.8 User Interface System

Usersinteract with acomputer using acommand interpreter or shell program.
Human users can a so communi cate through ahuman computer interface. They
can enter commandsthrough aterminal (keyboard/mouseand monitor) by typing
onthekeyboard or clickingonanicon or button on thedesktop. Theshd | interprets
commands and executesthe operations by invoking operating system services. A
user program can directly invokethe operating system servicesthrough software
interruptsasoknown assystem calls.

Check Your Progress

What arethefunctionsof CPU?

Writetheroleof processschedulinginthevirtua multiprogramming system.
Definetheterm network.

Namethe resources present in the context of the running program.

What functions should be provided by the process scheduling sub system
for theexecution of programs?

What isthe address space of the CPU?
7. What should the protection system ensure?

a > w D

S

3.4 OPERATING SYSTEM SERVICES

In acomputer system, usershaveto run their programs, store programsor data
permanently on secondary storage devices, and have to determine the
mal functioning programsand | ocatetheinformation needed to i dentify thereasons
for errors. Processes (running programs) may want to communi cate with each
other for sharing of dataand for cooperated execution. And processes may need
to read datafrom input deviceslikekeyboard, and write datato output devices
like printer and monitor. It will not be practi cablefor each user programto build

thesefacilitiesfor accomplishingitstask. Moreover, such facilitiesif built intoeach SystemSructure
user program may lead to asystem that is unsecured and undependable. So, the

operating system must providethe services needed to accomplish al thesetasks.

Theservices provided by an operating system for these and other purposes may

be grouped under thefour headingsgiven bel ow: NOTES

- Program Execution, Control and Communication.
- 1/O Operations.

- HleManipulation.

- Error Detection.

Program Execution, Control and Communication Services

A computer system must providefacilitiesfor execution of programs (processes)
and for controlling these programs. A program needs memory for loading the
program beforethe start of execution and other resourcesincluding the CPU for
execution. Inasystem, therewill bemany users and each user will beexecuting
many tasksall of which need memory, CPU and other resources. Theseresources
will be normally limited and shared among processesin a space and/or time
multiplexed fashion. In somesituations, an gpplication may be executed asmultiple
cooperating processesposs bly on different computers connected through network.
It may be necessary to exchangeinformation between processes. Also, processes
will becompeting for using the availableresources. So, thesefunctionsareto be
donein asupervisory mode by the operating system. Thus, an OS must provide
thefollowing services

- Creation and deletion of processes.

- Suspension and resumption of processes.

- Synchronizing execution of processes.

- Communi cation between processeson asingleor different computers.
- Preventing and handling deadl ock situations.

- Keeping track of the amount of memory spaces allocated to different
processes and the addresses of such memory spaces.

- Allocating main memory when requested.

- De-dlocating themain memory used by the processwhen it terminatesand
addingit tothefree spacelist for future alocation to other processes.

Services for 1/O Operations

User programs need to do I/O operations on different types of devicesduring
their executions. Each device hasitsown controller and associated commandsfor
I/O. 1t will behighly inefficient that auser learnsdl theselow-level commandsand
incorporate thesein the program. Theoperating system must hidefrom usersthe
hardware detailsof the devices and provide high-level commandslike open, read

Self-Instructional
Material 53

System Structure

54

NOTES

Self-Instructional
Material

and writeto handlel/O on al devicesirrespective of their types. Also, fromthe
protection of filesand efficiency point of view, it isnot advisableto dothel/O
operations directly by auser program. Manufacturer of each devicetypewill
provide a program appropriate to the device called device driver. The device
driverscantake high-level commandslike open, read and write asinputs and
tranglate them into low-level commands that the controller of the device can
understand. So, an OS must provide the serviceslike open, read and writeto
handleall devicesinauniform manner.

Services for File Manipulation

We need filesfor storing dataand programs permanently. You may have heard of
different filetypesliketext, image, executable, music, video and program source
files. A program takesinput from somefilesand writes output to someother files.
Generdly speaking, westoreorganized informationinfiles. Filesarecreated on
secondary storage devices. Filesystem isthe part of the OS program that isused
to create, manipulate, organize and maintain thefiles. Filesare organized using
directoriesin afilesystem. Usersneed not bother about how thefileisstored and
retrieved from secondary storage. It isthe duty of operating systemto hidethe
hardware specific detailsof secondary storage. The OS providesthefollowing
servicesto manipulateand maintainfilesinthesystem:

- Createfilesand directories
- Openfiles

- Closefiles

- Readfiles

- Writefiles

- Renamefiles

- Copyfiles

- Deletefilesand directories
- Ligfiles

- Searchfilesand directories
- Allocate, de-all ocate and manage secondary storage space

Services for Error Detection

A running program may have errors or bugs, which are to be detected and
corrected. Errorsmay be dueto many reasonsincluding trying to executeillegal
instruction or accessing of memory (intentionally or unknowingly) not alocated
for auser orinfiniteloopinaprocessor tryingto executeanillega operationon|/
O devices. Theoperating system monitorsthefunctioning of different programsto
detect errorsand to localize them. Users can confidently executetheir programs
without theworry of mafunctioning.

System Structure

3.5 SYSTEM CALLS

A system cdll istheinvocation of an operating sysem routine. Inorder tounderstand
how to usesystem calls, consider writing asimple program to read datafrom one NOTES
fileandto copy them to another file. There aretwo names of two different files:
oneistheinput file and the other isthe output file. One approach to understand
system callsisto ask the user for the names of thetwo filesin an interactive
system. Thisapproachwill requirethefollowing sequenceof system cdls:

- Writeaprompting message on the screen.
- Read from thekeyboard the character that thetwo fileshave.

Oncethetwofile namesare obtai ned, the program must open theinput file and
createthe output file. Each of these operationsrequires other system callsand
may encounter errors. When the program triesto open theinpuit file, it may find
that nofileof that nameexistsor that thefileisprotected against access. Inthese
cases, theprogram printsamessage on the screen and then terminatesabnormally.
Thisrequiresanother system cal. If theinput fileexists, thenwemust createthe
new output file. We may find an output filewith the samename. Thissituation may
cause the program to abort or we may del etethe existing file and create anew
one. After opening both thefiles, we may enter aloop that readsfrom input file
and writesto an output file. Each read and write must return statusinformation
regarding variouspossibleerror conditions. Findly, after theentirefileiscopied,
the program may closebothfiles.

Types of System Calls

Some of the system callsarediscussed asfollows:

Create: Inthissystem call, anew processis created with the specified
attributesand identifiers. Some of the parameterswhich can bedefined whilea
processisbeing created areasfollows:

- Leve of privilege, suchassystemor user
- Priority
- Sizeand memory requirements
- Maximum dataareaand/or stack size
- Maximum protectioninformation and accessrights
- Other system dependent data
Delete: The delete service is aso called destroy, terminate or exit. Its

execution causes the operating system to destroy the designated process and
removeit fromthesystem.

Abort: Itisused to forcibly terminate the process. Although a process
could conceivably abort itsalf, the most frequent use of thiscall isfor involuntary
terminations, such asremova of mafunctioning processfrom the system.

Self-Instructional
Material 55

System Structure

56

NOTES

Self-Instructional
Material

Fork/Join: Another method of process creetion and terminationisby means
of fork/join pair, originaly introduced as primitivesfor multiprocessor sysem. The
fork operationisused for splitting asequenceof ingtructionsinto two concurrently
executabl e sequences. Join operation isused to merge thetwo sequences of code
divided by thefork; itisavailableto aparent processfor synchronizationwitha
child.

Suspend: The suspend system call isalso called block in some systems.
Thedesignated processis suspended indefinitely and placed in the suspend State.
A process may be suspended itself or by another process authorized to do so.

Resume: Theresumesystem call isalso caled wakeup in somesystems.
Thiscdl resumesthetarget processwhichispresumably suspended. Obvioudly, a
suspended process cannot resumeitself because aprocess must be running to
haveitsoperating system call processed. So, asuspended processdependsona
partner processtoissuetheresume.

Delay: Thedelay system call isalso called sleep. Thetarget processis
suspended for theduration of the specified timeperiod. Thetimemay beexpressed
intermsof system clock ticksthat are system-dependent and not portableor in
terms of standard time units, such as seconds and minutes. A process may delay
itself or, optionally, delay some other process.

Get Attributes: It isan enquiry to which the operating system responds by
providing the current values of the process attributes, or their specified subset
from the Process Control Block (PCB).

ChangePriority: Itisaninstance of amoregenera set-process-attributes
system call. Obviously, thiscall isnot implemented in systemswhere process
priority isgtetic.

3.6 SYSTEM PROGRAMS

System calsprovide an interface between the processes of an operating system.

Thesecallsalow user-level processesto request some servicesfromtheoperating
system which processitself isnot dlowedto do. In handling thetrap, the operating
systemwill enter inthekernel modewhereit hasaccessto privileged instructions
and can perform the desired service on the behalf of user-level process. Itis
because of thecritical nature of operationsthat the operating system itself does
them every timethey are needed, for example aprocessinvolvesasystem call

telling the operating system to read or write particular areaand thisrequest is
satisfied by the operating system for 1/0. System programs provide basic
functioning to users so that they do not need to writetheir own environment for
program development (editorsand compilers) and program execution (shells). In
some cases, they are bundles of useful system calls. System programsprovidea

convenient environment for program devel opment and execution with the hel p of SystemSructure
followingtasks:

- FileManipulation: Thistask isused to perform the process of creating,
deleting, copying, renaming, printing and listing thefiles, etc.

- SatuslInformation: Thistask isused to performthe processof displaying
date, time, disk space, memory size, etc.

- FileModification: Thistask isused to perform the process of creating
and modifying filesusing text editors.

- Programming L anguage Support: Thistask is performed by using
compilers, assemblers, andinterpreterstointerpret the system programming.

- Program Loading and Execution: Loaders and linkers are used to
performthistask.

- Communications: Thesetasksincludethe process of remotelogin, and
sending and receiving messages.
Most users’ view of the operation system is defined by system programs
not theactual systemcals.

In a programmer’s view, processes achieve concurrent execution of
programs. The main processfor concurrent execution of aprogramisto create
child processes. It should assign appropriate prioritiesto them to either achieve
increased computation speed or execute somefunctionsof high priority. Themain
processand the child process a so havetointeract to achievetheir common goal.
Thisinteraction may involvethe exchangeof dataor may requirethetwo processes
to coordinatetheir activities.

NOTES

An operating system providesthe following four types of operationsto
implement the programmer’s view of processes:

- Creating child processesand assigning prioritiestothem

- Terminating thechild processes

- Determining the statusof child processes

- Sharing, communi cation and synchronization between processes
Thefollowing tasksare used for process management:

CreateaProcess. Createsanew processand assignstoit apriority and
auniqueidentifier called its processid and returnsthe processid to thecaller.

Satus: Checksthe status of aprocess and returnsacode terminated or
dive

Terminate: Terminatesthespecified child processor terminatesitself if no
processisspecified.

Self-Instructional
Material 57

System Structure

NOTES

Self-Instructional
58 Material

3.7 OPERATING SYSTEM DESIGN AND
IMPLEMENTATION

M odern operating systems are designed and devel oped carefully dueto their size
and complexity. A common gpproachisto dividethesystemsinto smal components.
Following arethetypesof syssem structureaccording to thestructureof theoperating
sysem:

Monolithic Architecture of Operating System

Thecomponentsof monalithic operating sysemareorganized in any designwithout
any reservation. Similar to other operating systems, applicationsin monolithic
operating system are separated from the operating systemitself. Therefore, the
operating system code runsin aprivileged processor modewhichisalso known
as kernel mode with access to system data and to the hardware. Various
applicationsruninanon-privileged processor mode known as user modewith a
limited set of interfaces available and with limited accessto system data. The
monolithic operating system structure with separate user and kernel processor
modeisshowninFigure3.3.

Application Application
Program Program
User Mode

Kernel Mode

System Services

Operating
System
Procedures

/

Yy Y

*b{ Hardware B

Fig. 3.3 Monoalithic Sructure of Operating System

When auser mode program callsa system service, the processor trapsthe call
and then switchesthe cdling thread to kernd mode. Compl etion of system sexvice
switchesthethread back to the user mode by the operating system and alowsthe
caller to continue. The monoalithic structure does not enforcedatahidingin the
operating system.

Layered Operating System

The operating systemisdivided into anumber of layers(levels), eachbuilt ontop
of lower layers. The bottom layer (layer 0) isthe hardware whereasthe highest
(layer N) istheuser interface. An operating system layer isan implementation of
an abstract object that i sthe encapsul ation of dataand operationsto manipul ate
thosedata. These operations(routines) can beinvoked by higher leve layers. The
layer itsdf caninvoke operationsonlower level layers. Layered gpproach provides
modul arity. With modul arity, layersare selected such that each layer usesfunctions
(operations) and servicesof only lower level layers. Eachlayer isimplemented by
using only those operationsthat are provided by lower level layers. The major
difficulty isappropriate definition of various|ayers. The components of layered
operating system are organized into modules. Each modul e provides a set of
functionsthat other module can call. Interfacefunctionsat any particular level can
invokeservicesprovided by lower layersbut not the other way around. Thelayered
operating system structurewith hierarchical organization of modulesisshownin
Figure3.4.

Application Application
Program v Program
User Mode
¥ Kemmel Mocs

System Services |

‘ File System

| Memory and /O Device Management

| Processor Scheduling |

Hardware |

Fig. 3.4 Layered Operating System

Oneadvantage of alayered operating system structureisthat each layer of code
isgiven accessto only thelower level interfacesand datastructuresit requires,
thuslimiting theamount of codethat wieldsunlimited power. Inthisapproach, the
Nth layer can access services provided by the (N-1)th layer and provide services
tothe (N+1)thlayer. Thisstructuread so dlowsthe operating system to be debugged
garting at thelowest layer, adding onelayer at atimeuntil thewholesystemworks

System Structure

NOTES

Self-Instructional
Material

59

System Structure

NOTES

Self-Instructional

60 Material

correctly. Layering also makesit easier to enhance the operating system; one
entirelayer can bereplaced without affecting other parts of the system. Layered
operating system ddliverslow gpplication performancein comparisonto monolithic
operating system. Examples of layered operating systemsare Virtual Address
exXtenson/Virtua Memory System or VAX/VMS, Multics, UNIX, etc.

Client-Server or Microkernel Operating System

Inmicrokernel system structure, communi cation takes place between user modules
using message passing. This structure movesfrom the kernel to the user space.
Thisstructureiseasy to extend amicrokernel and to port the operating systemto
new architectures. Thisstructureismorereliable (lesscodeisrunninginkernel

mode) and al so more secure. Theadvent of new conceptsin operating system
design, microkernd, isaimed at migrating traditiona servicesof an operating system,
out of monoalithickernd intotheuser leve process. Theideaistodividetheoperating
systeminto severa processes and each implements asingle set of services, for
examplel/O servers, memory servers, process servers, threadsinterface system,

etc. Each server runsin user modeand provides servicesto therequested client.

Theclient can be another operating system component or application program
that requests a service by sending amessageto the server. An operating system
kernel or microkernel running in kernel mode delivers the message to the
appropriate server and the server performsthe operationsand then microkernel

deliverstheresultsto theclient in another messageasillustrated in Figure 3.5.

Client PEACE Threads File Display
Application Interface Server Server
1 3
User Mode
Kernel Mode
........................ Microkernel

v Send ———

Hardware

Fig. 3.5 Microkernel Operating System

Examplesof microkerne operating systemsare Centreor Devel oment of advance
Computing or C-DAC PARAS, Windows NT/95, Mach, QNX, Chorus, €tc.
Theimportant characteristicsof microkernel operating sysemaresmplified base,
treditiona servicesof operating system have becomeperipherd, improvedreiahility,
vertical style accessinstead of horizontal, message passing facilitiesleadsto
distributed computing model (transparent local or remote services), subsystem’s
(Portable Operating System Interfacefor UNIX (POSIX), database, file, network
server, etc.), monolithic application performance competence, and foundations
for modular and portable extensions.

Virtual Machine Architecture Operating System

Thevirtua machine concept provides compl ete protection of system resources
snceeachvirtua machineisisolated fromal other virtud machines. Thisisolation,
however, permits no direct sharing of resources. A virtual machinesystemisa
perfect vehicle for operating system’s research and development. System
development isdoneonthevirtual machineinstead of on aphysical machineand
so doesnot disrupt normal system operation. Thevirtud machineconcept isdifficult
to implement due to the effort required to provide an exact duplicate to the
underlying machine.

processes

processes

processes iprocesses

_ Ll

- - e proaramming™” | yomel | kemel | kemel
kernel n e -
virtual-machine
implementation
hardware hardware
(@) 0

Fig. 3.6 Virtual Memory Architecture of Operating System

Figures 3.6 (a) and (b) display the structure of non-virtual and virtual machine,
respectively. Inthevirtual machine, complete protection of system resourcesis
provided sinceeach virtud machineisisolated fromdl other virtua machines. This
isolation permitsno direct sharing of resources. A virtual machinesystemisa
perfect vehicle for operating systems research and development. System
development isdoneonthevirtual machineinstead of on aphysical machineand
so doesnot disrupt norma system operation. Theresourcesof thephysica computer
areshared to create the virtua machinesin which CPU scheduling can create the
appearancethat users havetheir own processor. Spooling and afilesystem can
providevirtual card readersand virtua line printerswhereasanormal user time
sharing terminal serves as the virtual machine operator’s console. Virtual machine
isanillusion of areal machine. It iscreated by area machineoperating system,
which makes a single real machine appear to be severa real machines. The
architectureof virtud machineisshowninFigure3.5. Thebest exampleof virtua
machinearchitectureisinternationa BusinessMachinesor IBM 370 computer. In
this system each user can chooseadifferent operating system. Actually, virtual
machine can run several operating systemsat once onitsvirtual machine. Its

System Structure

NOTES

Self-Instructional
Material

61

SystemSructure multi programming sharestheresource of asingle machinein different manner.
Followingfactorsareimplemented tothevirtua machine:

- Control Program or CP: Control program crestestheenvironmentinwhich
virtual machinecan execute. It givesto each user facilitiesof real machine,
such as processor, storage 1/0 devices, etc.

- Conversation Monitor System or CM S: Conversation monitor system
Isasystem application having features of devel oping program. It contains
editor, languagetrand ator and various application packages.

- Remote Spooling Communication System or RSCS: Remote spooling
communication system providesvirtua machinewith theability totransmit
and recaivefileindistributed system.

- Interactive Problem Control System or | PCS: Aninteractive problem
control systemisused tofix thevirtua machine software problems.

MS DOS System Sructure

NOTES

Microsoft Disk Operating System (MSDOS) iswrittento providethefunctiondity
in the least space. To apply this concept, tasks are not divided into modules.
Although M S DOS supports simple structure but its interfaces and levels of
functionaity arenot well separated. Figure 3.7 displaysthe structureof MSDOS
system in which the resident system program residesin application programs
whereas M S DOS device drivers are connected to Read Only Memory Basic
Input/Output System (ROM BIOS) devicedriverswhich support aspecia kind
of program. Thisprogramisrequired to enablethe CPU to talk to other devices.
A ROM chip storesthese programs and these programs are col lectivel y known
asthe BIOS. In computing, a device driver or software driver is a computer
program allowing higher level computer programsto interact with ahardware
device. A driver typicaly communi cateswith the device through the computer bus
or communi cations subsystem to which the hardware connects. When acalling
program invokes aroutinein the driver, then therole of driver isto issue the
commands to the device. Once the device sends data back to the driver, the
driver may invokeroutinesintheorigina caling program.

application program b

resident system program

MS-DOS device drivers a I

ROM BIOS device drivers

) Fig. 3.7 MSDOS System Structure
Self-Instructional

62 Material

UNIX System Sructure

UNIX system structureislimited by hardwarefunctionaity. The origina UNIX
operating system had limited structuring. The UNIX operating system consistsof
two primeparts:
- Systems programs use kernel supported system callsto provide useful
functions, such ascompilation and filemanipulation.

- Thekernd consistsof everything below the system call interfaceand above
thephysica hardwareand providesthefilesystemn, CPU scheduling, memory
management and other operating system functions.

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

= signals terminal file system CPU scheduling
g 4 handling swapping block /O page replacement
2 character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Fig. 3.8 UNIX System Structure

Figure 3.8 displaysan arrangement of UNIX system structurewheretheusersare
inthefirst level whereas shellsand commands, compilersand interpreterssystem
librariesresideon the second level. System call interfaceto the kernel contains
sgnashandling character I/O sysemtermind drivers, filesystem swapping block
I/0O system, disk and tapedrivers, and a so CPU scheduling, page replacement,
demand paging, etc. Thekernd interfaceto the hardware a so resideson the same
level. Atlast level, terminal controllers, device controllers, disksand tapesand
memory controllersreside. Thekernel consistsof everything below the system
cal interface and abovethe physica hardwareand providesthefilesystem, CPU
scheduling, memory management, and other operating systiem functionsandasoa
large number of functionsfor oneleve.

System Structure

NOTES

Self-Instructional
Material

63

System Structure

64

NOTES

Self-Instructional
Material

12.

. Statethevarious servicesthat should be provided by the OS.
. What issystemcal?

10.
11.

Check Your Progress

What istheabort system call used for?

Which operations should be provided by the operating system toimplement
the programmer’s view of processes?

What arethetwo prime parts of UNIX system structure?

3.8

ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

. You may call CPU as the brain of any computer system. It takes all

maor decisons, makes al sorts of caculations and directs different parts
of the computer functions by activating and controlling the operations.

. Inthevirtuad machinemultiprogramming system, asinglemachinegivesan

illusion of many virtual machines, each of them having its own virtual
processor and storage space which can be handled through process
scheduling.

. Network istheinterconnection system between one computer and the other

computerslocated i n the same desk/room, samebuil ding, adjacent building
or inany geographical location over theworld.

. A running program hasvariousdatastructuresto represent itscontext. Code,

data, Program Counter (PC), registers, open filesand other resourcesin
use atogether represent the context.

. The process scheduling subsystem must providethefollowing functionsfor

theexecution of programs:
Servicesfor sdlecting next processto execute based on somescheduling
dgorithm
Context switching

Restarting thetimer to interrupt at theend of thetimeduration alotted
for thenew process

Transfer control to the new process

. Themainmemory isarranged asan array of bytes or wordsasdictated by

thelow-leve architectureof aCPU. Every memory |ocation hasdifferent
addresses. These addresses can befrom zero to the size of memory that
can be accommodated in the CPU. Thisiscalled the address space of a
CPU.

7. The protection system must ensure that each resource of the systemis System Sructure
accessed correctly and only by those processesthat are allowed to do so.

8. AnOSmust providethefollowing services:
Creation and del etion of processes NOTES
Suspension and resumption of processes
Synchronizing execution of processes
Communication between processeson asingleor different computers
Preventing and handling deadlock situations

K eeping track of the amount of memory spacesallocated to different
processes and the addresses of such memory spaces

Allocating main memory when requested

De-all ocating themain memory used by the processwhen it terminates
and adding it tothefree spacelist for future all ocation to other processes.

9. A systemcall istheinvocation of an operating system routine.
10. Theabort system call isused to forcibly terminatethe process.

11. Anoperating system providesthefollowing four types of operationsto
implement the programmer’s view of processes:

Creating child processesand assigning prioritiestothem

Terminating thechild processes

Determining the statusof child processes

Sharing, communication and synchroni zati on between processes
12. TheUNIX operating system consists of two prime parts:

Systems programs use kernel supported system callsto provide useful
functions, such ascompilation and filemanipul ation.

Thekernel consistsof everything below the system call interfaceand
above the physical hardware and provides the filesystem, CPU
scheduling, memory management and other operating system functions.

3.9 SUMMARY

- Operating system isasoftware program that enablesthe computer hardware
to communi cate and operate with the computer software.

- Kernel liesbelow system call interface and abovethe physical hardware.

- Thearithmetic andlogic unit and thecontrol unit of acomputer syssem are
jointly known asthe central processing unit.

Self-Instructional
Material 65

System Structure

66

NOTES

Self-Instructional
Material

- Therearevarioustypesof /0O devicesthat are used for different types of

applications.

- Inthevirtual machine multiprogramming system, asinglemachinegivesan

illusion of many virtual machines, each of them having its own virtual
processor and storage space which can be handled through process
scheduling.

- An operating system isacomplex and normally huge software used to

control and coordinate the hardwareresourceslikeaCPU, memory and I/
O devicesto enableeasy interaction of the computer with human and other
applications. The objectsor entitiesthat an operating system manages or
ded swithindudeprocesses, memory space, files, 1/0O devicesand networks,

- Anoperating system hasto provide many servicesfor theexecution of user

programs and system programs.

- Whenand inwhat order to alocatethe CPU for different processes, inthe

ready state, iscaled process scheduling or CPU scheduling. Thisscheduling
isdone based on various scheduling algorithmsused for this purpose.

- Theoperating sysem must dlocate memory to satisfy the needsof different

processesout of thefreememory availableat any time.

- Fileisan abstract concept for recoding the memory locationswherethe

information isrecorded on storage media. Thevariousfunctionsof file
management subsystem are, creation and del etion of files; creation and
deletion of directories; opening, reading, writing and gppending filesand
directories, alocation and deall ocation of storage blocks, etc.

- Thel/O subsystem provides utilitiesfor dl typesof communication needed

withthel/O devices.

- Networking sysemsmust provideremotel oginfadility for executing programs

and remote copy command facility.

- The protection system must ensure that each resource of the systemis

accessed correctly and only by those processesthat are all owed to do so.

- Usarsinteract with acomputer usngacommand interpreter or shell program.
- Inacomputer system, usershaveto run their programs, store programsor

data permanently on secondary storage devices, and haveto determinethe
mal functioning programsand | ocatetheinformation needed to identify the
reasonsfor errors.

- A computer system must provide facilities for execution of programs

(processes) and for controlling these programs.

- The operating system must hide from usersthe hardware details of the

devices and provide high-level commandslike open, read and write to
handlel/O onal devicesirrespectiveof their types.

- Operating sysem providesvarioussarvicesfor filemanipulation, likecreeting,

opening, closing, reading writing, renaming, copying, deleting, listing and
searchingfiles.

- Theoperating sysemmonitorsthefunctioning of different programsto detect

errorsandtolocaizethem.

- A system call istheinvocation of an operating system routine.
- Some of the frequently used system callsare create, delete, abort, fork/

join, suspend, resume, delay, get attributes, change priority, etc.

- In a programmer’s view, processes achieve concurrent execution of

programs. Themain processfor concurrent execution of aprogramisto
create child processes.

- Thevarious types of system structure according to the structure of the

operating system are monolithic architecture, layered, client-server or
microkernel, virtual machine architecture, MS DOS system and UNIX
system structure.

3.10 KEY WORDS

- OS: A softwareprogramthat enabl esthe computer hardwareto communicate

and operate with the computer software

- Process. A program in execution

- Network: Theinterconnection system between onecomputer and the other

computerslocated in any geographical location over theworld

- System call: Invocation of an operating system routine

3.11 SELF-ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1
. What istheimportance of virtua machine concept?

. Nametheentitieswhich the operating system manages.

. Givethemajor components needed for an operating system.
. Definetheterm networking system.

. What arethe services provided by operating systems?

. Namethe parametersof create systemcal.

~N o O~ WODN

Definethel/O structure.

System Structure

NOTES

Self-Instructional
Material

67

System Structure

68

NOTES

Self-Instructional
Material

8. Which system calls are used to implement the programmer’s view of
processes?

9. What do you understand by microkernel operating system?

Long-Answer Questions

1. Describethevariousobjectivesof operating systems.

2. Writeanote on operating system structures.

3. Explainthesubsystemsneeded for an operating system.
4

. Describethe various services provided by an operating system with the
help of examples.

Discussthevarioustypesof system calls.
6. Illustrate the programmer’s view of processes.
7. Describesystem structureswiththe help of illustration.

ol

3.12 FURTHER READINGS

Silberschatz, Abraham, Peter B. Galvin and Greg Gagne. 2008. Operating System
Concepts, 8th Edition. New Jersey: JohnWiley & Sons.

Tanenbaum, Andrew S. 2006. Operating Systems Design and | mplementation,
3rd Edition. New Jersey: Prentice Hall.

Tanenbaum, Andrew S. 2001. Modern Operating Systems. New Jersey: Prentice
Hal.

Deitel, Harvey M. 1984. An I ntroduction to Operating Systems. Boston (US):
Addison-Wedey.

Stdlings, William. 1995. Operating Systems, 2nd Edition. New Jersey: Prentice
Hal.

Milenkovic, Milan. 1992. Operating Systems. Conceptsand Design. New York:
McGraw Hill Higher Education.

Mano, M. Morris. 1993. Computer System Architecture. New Jersey: Prentice
Hall Inc.

BLOCK - 11
PROCESS CONCEPT

UNIT 4 PROCESSES IN
OPERATING SYSTEM

Sructure

4.0 Introduction

4.1 Objectives

4.2 Basic Concepts of the Process

4.3 Process Scheduling

4.4 Operations on Processes

4.5 Inter Process Communication

4.6 Answers to Check Your Progress Questions

4.7 Summary

4.8 Key Words

4.9 Sdlf-Assessment Questions and Exercises
4.10 Further Readings

4.0 INTRODUCTION

Previously, therewas aboundation of loading only one programinto themain
memory for execution at atime. Thisprogramwasvery multifaceted and resourceful
asit had accessto al the hardware resources, such as memory, CPU time, 1/0
devices, and so on. With time improvements were accepted as new systems
incorporateavariety of new and powerful featuresthat dramaticaly improved the
efficiency and functionaity of your overall system. Modern computer systems
corroborate multi programming, which allowsanumber of programstoresidein
the main memory at the sametime. These programs havethe potentia toruna
number of programss multaneoudly thereby requiring the system resourcesto be
shared among them. Multi-programmed systems need to di stinguish among the
multipleexecuting programs, whichisaccomplished with the concept of aprocess
(also called task on some systems). A processisaprogram under executionor a
set of executable machineinstructions. A process can be either asystem process
executing the system’s code or a user process executing the user’s code.

When multiple processes run on asystem concurrently and morethan one
processrequiresthe CPU at thesametime, then it becomes essential to select any
one process to which the CPU can be allocated. To servethis purpose, logical
schedulingisrequired. In addition, severa processesbeingin operation onasysem
also need to intercommunicatein order to reciprocate some dataor information.
Thiskind of intercommunication between severa processesisreferredto asinter-
Process Communication (IPC).

Processesin Operating

NOTES

Self-Instructional
Material

System

69

Processesin Operating Inthisunit, you will study the basi c concepts of processes, definition and

System . : :
types of process scheduling, operations to be performed on processes, inter-
process communication.

NOTES 4.1 OBJECTIVES

After going throughthisunit, youwill beableto:
- Introducethe basic concepts of processes

- Discussabout the various states of aprocess and the transition between
these states

- Explainthevarious operationsthat can be performed on processes
- Understand theterm process scheduling
- Provideanoverview of inter-processcommunication

4.2 BASIC CONCEPTS OF THE PROCESS

Inthis, wewill discuss some basic concepts of processes.

The Process

Asdtated earlier, aprogram undergoing an execution procedureistermed asa
process. Thereisahairline difference between the program and processin the
sensethat aprogram isapassive entity that does not initiate anything by itself
whereasaprocessisan active entity that performsall the actionsspecifiedina
particular program. A process comprisesof not only the program code (known as
text section) but also aset of global variables (known asdata section) and the
Process Control Block (PCB). The processcontrol block of aprocess contains
some additional information about the processlike aprogram counter to specify
the current activity in progress, the contents of CPU’s registers, a process stack
to storetemporary datalikefunction parameters, locd variablesusedinafunction,
return addresses, and so on.

Note: The set of instructions, data, and stack together form the address space
of a process.

There can be either one-to-one or one-to-many relationship between
programs and processes. A one-to-onerelationship existsin caseonly asingle
ingtanceof aprogramisrunning onthe system. Regardlessof whether themultiple
instances of asingle program arerunning simultaneously or aconcurrent program
(A program that requires some of its partsto be executed concurrently) isbeing
run, there exists one-to-many rel ationship between programs and processes. In
thiscase, thetext section of themultipleinstanceswill be same but the data section
will bedifferent.

Self-Instructional
70 Material

Oneimportant thing to notice about the processesisthat some processes Processesin Operating
involve higher computation than I/O operations, thereby, demanding more use of System
CPU than 1/0O devicesduring their lifetime. Such processes where the speed of
computation isgoverned by CPU arecalled CPU-bound or compute-bound.

Contrastiveto this, are some processeswheretherearealot of involvement I/0 NOTES
operations as compared to computation during their lifetime. Such processesare
caled1/0-bound asthe speed of executionisgoverned by theinput/output device
not by the speed of the CPU.

Process Sates

Each process in the operating system tagged with a ‘State’ variable—an integer
valuethat hel psthe operating system to settle conclusively what should be done
with the active process and a so givesthe evidence of the nature of the current
activity inaprocess. A processmay bein oneof thefollowing statesdepending on
the current activity of the process.

- New: Aprocess is said to be in a “New’ state if it is being created for the
firdtime.

- Ready: A process is said to be in a ‘Ready’ state if it is ready for the
execution and waiting for the CPU to beallocated toit.

- Running: A process is said to be in a ‘Running’ state if CPU has been
alocatedtoit andit isbeing executed.

- Waiting: Aprocess is said to be in a “Waiting’ state (also called ‘blocked’
state) if it has been blocked by some event. Unlessthat event recurs, the
process cannot resumethe execution procedure. Examplesof such blocking
eventsare completion of somel/O operation, reception of asigna, and so
on. Notethat aprocessinwaiting stateisunabletorunevenif theCPU is
avalable

- Terminated: Aprocess is said to be in a “Terminated’ state if it has completed
itsexecution normally or it has been terminated abruptly by the operating
system because of someerror or killed by some other process.

Note: Onasingleprocessor system, only one process may bein running
state at one time; however in a multiprocessor systemwith m CPUs, at most
m processes may be in running state at one time.

Each processundergoes changesin statesduringitslifetime. Thischange
that occursinthe state of aprocessisknown asstatetransition of aprocess. By
andlarge, it is caused by the occurrence of someevent inthe system. Thereare
many possiblestate transitions (Refer Figure4.1) that may crop up along with
their possible causesareasfollows:

- New — Ready: Thistransition takes place if a new process has been
loaded into themain memory and itiswaiting for the CPU to be allocated
toit.

Self-Instructional
Material 71

Prgtcminopefa“”g - Ready — Running: This transition takes place if the CPU has been
System allocated to aready processand it has started its execution.

- Running — Ready: Thistransition may occur if:
NOTES (i) Thetimediceof thecurrently running processhasexpired.
(i) Somehigher priority process getsready for execution, and so on.

Inthiscase, the CPU ispreempted from the currently executing process
and allocated to some another ready process.

- Running — Waiting: Thistrangtion may teke placeif thecurrently running
process.

(i) Needsto perform somel/O operation.
(i) Hastowait for amessage or some action from another process.
(iii) Requestsfor someother resource.

Inthiscase, the CPU getsrelieved by the processand can beall ocated
to some another ready process.

- Running — Terminated: Thistransition happensif the currently running
process

(1) Hassuccessfully accomplished itstask and requeststo the operating
systemfor itstermination.

(if) Isterminated by itsparent in casethe function performed by itisno
longer required.

(ii) Isterminated by thekernd becauseit hasexceeded itsresource usage
limit or involvedin adeadlock.

Inthiscase, the CPU ispreempted from the currently running process
and alocated to some another ready process.

- Waiting— Ready: Thistrangtion takesplaceif an event (for example, I/
O completion, signa reception, synchronization operation, etc.) for which
the process waswaiting, has occurred.

T

admitted
v
event occurs Ready
‘ .
Waiting interrupt | |scheduling Terminated
¥
Running completion

awaits event or 1/0

Fig. 4.1 Process Sate Transition Diagram

Self-Instructional
72 Material

Process Control Block

The operating system maintainsastructuraly organized table called pr ocesstable
to keep track of and record al the processesin the system that includesan entry
for each process. Thisentry iscalled Process Control Block (PCB)—a data
structure created by the operating system for representing aprocess. A process
control block stores descriptive information pertaining to aprocesssuch asits
state, program counter, memory management information, information about its
scheduling, allocated resources, accounting information, and so on, that isrequired
to control and manage a particular process. The basic purposeisto apparently
manifest thehitherto advancement of aprocess. Someof theimportant fiel dsstored
inaPCB areasfollows:

- Process| D: Each processisassigned auniqueidentification number called
Process| dentifier (Pl D) by theoperating system &t thetimeof itscreetion.
PID isusedto refer the processin the operating system.

- Process state: It stores the current state of a process that can be new,
ready, running, waiting, or terminated.

- Parent Process|D: It storesthe PID of the parent, if the processhasbeen
created by some other process.

- Child Process I Ds: It stores the PID s of al the child processes of a
parent process.

- Program Counter: It containsthe address of theinstruction that isto be
executed next inthe process. Whenever CPU switchesfrom one process
to another, the program counter of the old processis saved so that the
operating system could resumewith the sameinstruction whenever theold
processisrestarted.

- Event Information: If the processisinwaiting state, then thisfield contains
theinformation about theevent for which the processiswaiting to happen.
For example, if the processiswaiting for an 1/0 device, then thisfield
storesthe|D of that device.

- Memory Management I nformation: It includesinformationrelated to
thememory configuration for aprocess such asthevaue of baseand limit
registers, the pagetables (If paging memory management technique has
been used) or the segment tables (If segmentation memory management
technique has been used).

- CPU Registers: It storesthe contents of index registers, general purpose
registers, condition codeinformation, and so on, a thetimewhen the CPU
was last freed by the process or preempted from the process.

- CPU Scheduling I nformation: Itindudesinformation used by thescheduling
agorithmssuch asthe processpriority number (In casethepriority scheduling
isto beused for the process), the pointersto appropriate scheduling queues

Processesin Operating

NOTES

Self-Instructional
Material

System

73

Processesin Operating

System

74

NOTES

Self-Instructional
Material

depending upon the current state of the process, the timewhen CPU was
last alocated to the process, and so on.

- 1/O Satus: Itincludesinformation like I/O devicesalocated to aprocess,
pointersto thefiles opened by the processfor 1/0, the current positionin
thefiles, and soon.

4.3 PROCESS SCHEDULING

Themain objectiveof multiprogrammingisto keepsthejobsorganizedinsucha
manner that CPU hasaways onetask to executein thequeue. Thisconfirmsthat
the CPU isutilized to themaximum level by reducingitsidletime., Thispurpose
can bevery well achieved by keeping the CPU busy at all thetimes. However,
when two or more processes competefor the CPU at the sametime, then choice
has to be made which process to allocate the CPU next. This procedure of
determining the next process to be executed on the CPU is called process
scheduling and the modul e of an operating system that makesthisdecisionis
cdledthescheduler.

Scheduling Queues

For scheduling purposes, there exist different queuesin the system that are as
follows

- Job Queue Each processentersthe system for execution. Assoon asthey
enter the execution phase, they get into aqueue called job queue (Or input
gueue) on amass storage device, such ashard disk.

- Ready Queue: Fromthejob queue, the processeswhich areready for the
throughput are shifted into the main memory, wherethey arekept into a
queue called ready queue. In other words, the ready queue contains all
those processesthat arewaiting for the CPU.

- Device Queue: For each I/O deviceinthe system, aseparate queuecaled

device queueismaintained. The processthat needsto perform I/O during
itsexecution iskept into the queue of that specific /O deviceand waits
thereuntil itisserved by thedevice.
Generdlly, both theready queue and device queue are maintained aslinked
liststhat contain PCBs of the processesin the queue astheir nodes. Each
PCB includes apointer to the PCB of the next processinthe queue (Refer
Figure4.2). In addition, the header node of the queue containspointersto
the PCBsof thefirst and last processin the queue.

PCB;, PCB, PCB,

— . > PR > e——>NULL
l ® A

Header

Fig. 4.2 Ready Queue and Device Queue Maintained as Linked List

Whenever, aprocessinthejob queueisin the state of readinessand waiting to be
executed, it isbrought into the ready queue whereit waitsfor the CPU alocation.
OnceCPU isdlocatedtoit (that is, the process switchesto therunning state), the
following trangitionsmay happen.
(i) If theprocessneedsto perform somel/O operation during itsexecution, it
isremoved from theready queueand put into the appropriate device queue.
After the processcompletesits|/O operation and isready for theexecution,
itisswitched from the device queueto ready queue.

(if) If aninterrupt occurs, the CPU can beforcibly taken away fromthecurrently
executing processand the process hasto wait until theinterrupt ishandled.
After that, the processis put back into the ready queue.

(i) 1f thetimedice(in caseof time sharing systems) of the processhasexpired,
the processis put back into the ready queue.

(iv) If theprocesscreatesanew processand hastowait until thechild process
terminates, the parent processis suspended. After the execution of child
process, it isagain put back into the ready queue.

(v) If theprocesshassuccessfully completeditstask, it isterminated. The PCB
and all theresourcesallocated to the process are deall ocated.

All thesetransitions can be represented with the help of aqueueing diagram as

showninFigure4.3.
!proceﬁ from the job queue
Ready Queue

<&
<

\ 4

timedice
expired

interrupt
occurs

process terminated

child process
terminates

wait for

5/ interrupt
handled

Fig. 4.3 Queueing Diagram

Note: Inasingleprocessor system, sincethere can be only onerunning process
at a time, there is no need to maintain a queue for the running processes.

Types of Schedulers

Thefollowing types of schedulers (Refer Figure4.4) may coexistin acomplex
operating system.
- Long-Term Scheduler: Itisalso known asjob scheduler or admission

scheduler workswith the job queue. It chooses the next processto be

Processesin Operating

NOTES

Self-Instructional
Material

System

75

Processesin Operating

System

76

NOTES

Self-Instructional
Material

executed fromthejob queueandloadsit into themain memory for execution.
Thelong-term scheduler must sel ect the processesin such away that some
of the processesare CPU-bound whileothersarel/O-bound. Thisisbecause
if al the processesare CPU-bound, then for maximum number of timesthe
other deviceswill remainidlieand unused. Onthecontrary, if al theprocesses
arel/O-bound, then CPU will remainidlemost of thetime. Thus, to make
the best use of and optimize both, abalanced mix of CPU-bound and 1/0-
bound processesmust be selected. The scheduler hel psto control thedegree
of multiprogramming (that is, the number of processesin theready queue)
inorder to achievethe maximum efficiency of the processor utilization at
thedediredlevd. For this, thelong-term scheduler may admit new processes
intheready queuein case of poor processor utilization or may reducethe
rate of admission of processesin the ready queuein case the processor
utilizationishigh. By and large, thelong-term scheduler isinvoked only
when aprocessexitsfrom thesystem. Thus, thefrequency of invocation of
long-term scheduler entirely dependant on the system andworkload andis
much lower than other two typesof schedulers.

- Short-Term Scheduler: Itisaso known as CPU scheduler or process

scheduler sdlectsaprocessfrom thememory from theready queue geared
up for theexecution and alocates CPU toit. Thisscheduler needsrepeated
invocationto carry out theexecution ascompared to thelong-term scheduler,
the primary reason being aprocessexecutesfor ashort period under normal
working conditions and then it may haveto wait either for 1/0 or some
other reason. At that time, CPU scheduler isrequired to select some other
processand alocate CPU toit. Thus, the CPU scheduler must befast in
order to providetheleast time gap between execution procedure.

- Medium-Term Scheduler: Itisalso known asswapper comesinto play

whenever aprocessisto beremoved from the ready queue (or from the
CPU in case it is being executed) thereby reducing the degree of
multiprogramming. Thisprocessis stored at some other fragment onthe
hard disk and later brought into the memory to restart the execution from
the point whereit | eft off. Thistask of temporarily switchingaprocessin
and out of main memory isknown asswapping. Themedium-term scheduler
selectsaprocessamong the partially executed or unexecuted swapped-
out processesand swapsit in themain memory. The medium-term scheduler
isusually invoked when thereis some unoccupied spacein the memory
made by the termination of aprocessor the supply of ready processreduces
bel ow aspecified limit.

medium-term .

! medium-term ! Job Queue

y scheduler + L— 1 . -
[P 1 long-term

! [---- 7 scheduler '
vV 0 e

currently executing
process swapped out

»

—> Dataflow
=== Control flow

Exit
Fig. 4.4 Typesof Schedulers

Context Switch

Transferring the control of CPU from one processto another demandsfor saving
the context of the currently running process and | oading the context of another
ready process. Thismechanism of saving and restoring the context of theongoing
processisknown as context switch. The portion of the process control block
including the processstate, memory management information and CPU scheduling
information together constitutesthe context (also called stateinfor mation) of a
process. Context switch may occur dueto varied reasons, someof which areas
follows

- Thecurrent processterminates and exitsfrom the system.

- Thetimediceof the current processexpires.

- Theprocesshastowait for 1/0 or some other resource.

- Some higher priority process entersthe system.

- Theprocessrelinquishesthe CPU by invoking somesystem call.

@

Context switchinginvolvesatwo step procedure, which areasfollows:

Save Context: Inthisstep, the kernel savesthe context of the ongoing
executing processinits PCB of the process so that the proficient restoration
of the context can easily take place at somepoint inthefuture. Thisisonly
achieved when the processing phase of the ongoing processis successfully
over and now theexecution of the sugpended process can berecommenced.

Restore Context: In this step, the kernel loads the saved context of a
different processthat isto be executed next in theline. Notethat if the
processto beexecuted isnewly created and CPU hasnot yet been alocated
toit, therewill beno saved context. Inthiscase, thekernel loadsthe context
of thenew process. However, if the processto be executed wasin waiting
state dueto I/O or some other reason, therewill be saved context that can
berestoredinfuture.

Oneof themajor detrimentsof using context switchingisthatitincursa
heavy cost to the system interms of real timeand CPU cycles. Owingto

Processesin Operating
System

NOTES

Self-Instructional
Material 77

Processesin Operating

S the fact that during context switching the system does not perform any

productivework. Therefore, context switching should begenerdly refrained
from asfar as possible otherwiseit would amount to recklessuse of time.
Figure 4.5 shows context switching between two processesP, and P,.

NOT ES Operating system Process state
Py: running
P,: ready
Interrupt or system call
Save context
PCB;
; Py: ready
: P,: ready
Restore context
PCB,
P;: ready
P,: running
Interrupt or system call
Save context
PCB,
T Py: ready
Restore context P ready
PCB;
P: running
P,: ready

Fig. 4.5 Context Switching between Processes P, and P,

Check Your Progress

1. What doesaprocess control block contain?
2. Definethesignificanceof processstates.
3. How do wedefinetherunning to waiting process statetransition?

4. What arethe different types of queuesin the system used for scheduling
purposes?

5. What ismeant by context switchintermsof processes?

4.4 OPERATIONS ON PROCESSES

There are innumerable operations that can be fulfilled on processes which
encompasses creati ng, terminating, suspending, or resuming aprocess, and so on.
To successfully execute these operations, the operating system providesrun-time
services(or system calls) for the process management. The user may invokethese
system calls either directly by embedding the process supervisory calls in the user’s
program or indirectly by typing commandson thetermina which aretrandated by

the system into system calls. In this section, wewill discussonly about process
creation and termination operations.

Self-Instructional
78 Material

Process Creation

Whenever, an operating systemisinitialized on the system, anumber of processes
(system processes) are created automatically. Out of these, someinvolve user
interaction (called for eground processes) while othersare not rel ated with any
user but still perform some specific function (called backgr ound processes) to
smooth compl etion of the booting task. In addition to system processes, new
processes can be created afterward aswell. Sometimes, auser process may need
to create one or more processes during its execution. It can do the same by
invoking the process creation system call (for example, CreateProcess ()
inWindowsand fork () inUNIX whichtellsthean operating systemto create
anew process. Thistask of creatinganew processon therequest of someanother
processiscalled processspawning. The processthat spawnsanew processis
called par ent process whereas the spawned processiscalled thechild process
(or sub process). The newly created process can further create new processes
thereby generating hierarchy of processes.

Whenever, a process creates a child process, there are chances of
innumerablelikelihoodsthat may ari sedepending ontheoperating systemingdled.
Someof theselikdlihoodsareasfollows:

(i) Either the parent and child process may run concurrently
(asynchronous process cr eation) or the parent process may wait
until the child process compl etesitstask and terminates (Synchr onous
processcreation).

(i) Thenewly created process may betheduplicate of the parent process
inwhich caseit containsacopy of the address space of itsparent. On
the other hand, the child process may have anew program |oaded
into itsaddress space.

(i) Thechild processmay berestricted to asubset of resourcesavailable
to the parent process or the child process may obtain its resources
directly from the operating system. In theformer case, theresources
being used by the parent processneed to bedivided or shared among
itsvariouschild processes.

Note: Whenever, a process creates a new process, the PID of the child process
is passed to the parent process.

Process Termination

Depending upon the condition, aprocess may be terminated either normally or
forcibly by someanother process. Normal termination occurswhen the process
successfully executesthe assigned task and invokes an appropriate system call
(for example, ExitProcess () inWindowsand exit () inUNIX) totell
the operating systemthat it isfinished. Consequently, al the resourcesheld by the
process are deall ocated, the processreturns output data (if any) toitsparent and

Processesin Operating

NOTES

Self-Instructional
Material

System

79

Processesin Operating

System

80

NOTES

Self-Instructional
Material

finaly, the processisremoved from the memory by deleting its PCB from the
processtable.

Note: A process that no longer exists but still its PCB is not removed
from the process table is known as a zombie process.

Contrary tothis, aprocessmay causeabnormal termination of someanother
process. For this, the processinvokesan appropriate system call (for example,
TerminateProcess () inWindowsandki | | () inUNIX) that tellsthe
operating systemto kill some other process. Generally, the parent process can
invoke such asystem call to terminateitschild process. Asagenera rule, this
occurrencetakes place because of thefollowing reasons.

(i) Cascadingterminationinwhich thetermination (whether normal or
forced) of aprocess causes the termination of all its children. On
some operating systems, achild processis not alowed to execute
whenitsparent isbeing terminated. In such cases, theoperating system
initiates cascading termination.

(i) Thetask that wasbeing performed by the child processisnot required.

(i) Thechild processhasused uptheresourcesalocated toit morethan
that it was permitted.

4.5 INTERP ROCESS COMMUNICATION

The processesthat coexist inthememory at the sametimearecalled concurrent
processes. The concurrent processes may either beindependent or cooperating.
Theindependent (also called competitors) processes, asthe nameimplies, do
not share any kind of information or datawith each other. They just competewith
each other for theresourceslike CPU, I/O devices, and so onthat arerequired to
accomplishtheir operations. Thecooper ating (also caled inter acting) processes,
on theother hand, need to exchangedataor information with each other. For this,
they require some mechanism that allowsthem to communi cate with each other.
One such mechanismiis Interprocess Communication (IPC)—a very useful facility
provided by the operating system.

Two basic communication model sfor providing |PC areshared memory
systems and message passing systems. In the former model, a fragment of
memory isshared among the cooperating processes. Hence, if processeswantto
exchangedataor information, it can do so by writing to and reading from this
shared memory. However, in the latter model, the cooperating processes
communicate by sending and receiving messages from each other. The
communi cation using message passing isvery time consuming as compared to
shared memory. Thisisbecause the message passing systemisimplemented with
thehelp of an operating system callsand thus, it requiresamajor involvement of
kernel. On the other hand, in shared memory systems, system callsareused only
to set up the shared memory area. Once the shared areais set up, no further
kernel interventionisrequired.

Shared Memory Systems

In shared memory systems, the processthat needsto communicate with other
processes creates ashared memory segment in itsindependent address space.
Other processescan communicatewith thisprocess by attaching itsshared memory
segment along with their address space. All the communi cating processes can
read or write datathrough this shared area. Note that these processes must be
synchronized so that no two processes should be ableto accessthe shared area
simultaneoudly. Figure 4.6 showsashared memory communication modd .

Kernel
Process P,]
write data
shared memory |€
ProcessP, | read data

Fig. 4.6 Shared Memory Communication Model

To understand the concept of shared memory systems, consider acommon
exampleof cooperating processes known asproducer—consumer problem. In
thisproblem, there aretwo processes, oneis producer that producestheitems
and other isconsumer that consumestheitems produced by the producer. These
two processes need to run simultaneously thereby require communication with
each other. One possible sol ution to this problem can be provided through shared
memory. Both the producer and consumer processes are made to shareacommon
buffer betweenthem. Theproducer fillsthe buffer by placing the produced items
init and the consumer vacatesthe buffer by consuming theseitems.

The buffer shared between producer and consumer may be bounded or
unbounded. In bounded buffer, thesizeof buffer isfixed. Therefore, the producer
hastowait in casethe buffer isfull and consumer hasto wait in casethebufferis
empty. Ontheother hand, in unbounded buffer, thereisno limit onthebuffer size.
Thus, only consumer hasto wait in casethereisnoitem to beconsumed. However,
producer need not wait and it may continuoudly produceitems.

Note: In case of bounded buffer, the producer—consumer problem is
also known as bounded-buffer problem.

Toimplement the bounded buffer problem using shared memory, consider
the shared buffer consistsof N dotswith each capable of storing anitem. Further,
assumethat the buffer isimplemented asacircular array having two pointersin
and out. Thepointer in pointsto the next free d ot in the buffer and the pointer out
pointsto thed ot containing the next item to beconsumed. Initialy, bothinand out
are set to zero. The following code written in ‘C’ language illustrates the
implementation of shared area.

Processesin Operating

NOTES

Self-Instructional
Material

System

81

Processesin Operating
System

NOTES

Self-Instructional
82 Material

#define size 100; /* N=100 */
int buffer[size];

int in=0;

int out=0;

To implement the producer process, alocal variablei t em pr oduced
isused that storesthe newly produced item. The producer produces an item,
placesitinthebuffer at the position denoted by in, and updatesthevaueof in. It
continuesto do so aslong asbuffer isnot full. Oncethe buffer getsfull, that is,
when(in + 1) %size == out,itgoestothewaiting state and remains
inthat state until some slot becomesfreeinthebuffer (that is, until consumer
removes some item from the buffer). The following code illustrates the
implementation of the producer process:

int item_produced;
while (1)
{
item_produced = produce_item() ;

/* calling procedure to produce an item */

while(((in + 1) % size) != out)
{ /* check i1if buffer is not full */
buffer[in] = item produced;

/* put item into the buffer */
in = (in + 1) % size;

/* update in to point to next free slot */

Likewise, to put into the effect, the consumer process, alocal variable
i t em consuned isusedthat storestheitem to be consumed. The consumer
removesanitem from the position denoted by out in the buffer, updatestheva ue
of out, and consumesthat item. It continuesto do so aslong asthe buffer isnot
empty. Oncethe buffer getsempty of the contents, thatis, wheni n == out ,
it goesto thewaiting state and remainsin that state until producer places some
iteminthebuffer. Thefollowing codeillustratestheimplementation of the consumer

process.
int item consuned;
whi | e(1)
{

while(in != out) /* check if buffer is not
enpty */

{

itemconsumed = buffer[out];

/* remove item from the buffer */

out = (out + 1) %size; /[/* wupdate out to

point */

/[* to the next itemto be consuned Processesin Operating
* System

}

consunme_item(item consuned);
/* calling procedure to consume an item*/ NOTES

Note: For the sake of simplicity, we have assumed that the itemin the
buffer is of typeinteger, and the implementation of procedures for producing
or consuming itemsis not shown here.

This solution to bounded-buffer problem permitsto haveat most size-1
itemsinthebuffer at thesametime. In order to havesizeitemsin thebuffer at the
sametime, wewill need to devel op adifferent solution. In addition, thissolution
doesnot addressto how toimplement the synchroni zati on between producer and
consumer.

Message Passing Systems

Asmentioned earlier, the message passing system, usestwo systemcalls, send ()
and receive (). The sender process (say, P,) sends the message to the
operating system by invokingthe send () system call. The operating system
storesthismessageinthe buffer areauntil thereceive () systemcdl isinvoked
by the receiver process (say, P,). After that the operating system deliversthis
messageto P,. In casethereisno message availablefor P, whenit invokesthe
receive () systemcal, the operating system blocksit until some message
arivesfor it. Ontheother hand, if anumber of messagesarrivefor P,, theoperating
system putsthemin aqueue and deliversthemin FIFO order upon theinvocation
of receive () cal (onefor each process) by P,. Figure4.7 showsthe message
passing communication mode!.

Kernel P
receive send
message message
Process P,
» Process P,

Fig. 4.7 Message Passing Communication Model

In message passing, it isnot mandatory for the communi cating processesto be
made on the self same computer rather they can made on different computers
connected vianetwork (adistributed environment). Therefore, acommunication
relationship is set up between the two processes, whenever they want to
communicate. At thephysicd leve , thecommuni cation associ ation may bebrought
about via shared variables or bus or the network, and so on. However, at the

Self-Instructional
Material 83

Processesin Operating logicd level, somefeaturesrelated with theimplementation of communication link
System .) :
arise, which arediscussed here.

Types of Communication

NOTES Processes may communicatewith each other either directly or indirectly.

In direct communication, processes address each other by their PID
assigned to them by the operating system. For example, if aprocess P, wantsto
send amessageto processP,, thenthesystem calssend() andr ecei ve()
will bedefined asfollows:

send (PID2, message)

receive (PID1, message)

Since, both sender and receiver process need to know each other’s PID,
thistypeof communicationisknown assymmetricdirect communication. However,
asymmetry in addressing can be represented by making only the sender process
to address the receiver process by its PID but the receiver process need not
know the PID of the sender process. In case of asymmetric direct communication,
thecalssend() andr ecei ve() will bedefined asfollows:

send (PID2, message)
receive (id, message)

Now, when an operating system deliversamessage to process P, upon the
invocationof ar ecei ve() cal byit, theparameter idisreplaced withthe PID
of the sender process.

Inindirect communication, messages are sent and received viamailbox
(alsoknown asport)—a repository of interprocess messages. A mailbox, as the
nameimplies, isjust like apost box into which messages sent by the processes
can be stored and removed by other processes. Thedifferent characteristicsof a
mailbox areasfollows:

- Eachmailbox hasauniquelD ass gned to it and the communi cation between
the processestakes placethrough anumber of mailboxes.

- The possessor of themailbox isthe onethat has created it and only this
process hastheauthority to receive messagesfromit. Nevertheless, other
processes can only send messagestoit. In other words, therecan bemultiple
sendersbut asinglerecipient for amailbox.

- Theprocessthat knowsthe D of amailbox can send messagestoit.

- Besidesauser process, the operating system may also ownamailbox. In
this case, the operating system may alow the processesto create or delete
amailbox, send and recelve messagesviamailbox. The processthat creates
themailbox becomesthe owner of that mailbox and may receive messages
through thismailbox. However, withtime, other processescan dso bemade
to recelve messagesthrough thismailbox by passing ownership to them.

Self-Instructional
84 Material

The system callsto send amessage to amailbox (say, X) and receivea Processesin Operating
messagefromamailbox will bedefined asfollows: System
() send(X, message)
(i) receive(X, message)
Asdstated earlier, it iscompul sory that acommunication link must exist
between processes beforethe onset of the communication. The communication

link exhibitsdifferent propertiesin direct and indirect communication, which are
discussedinTable4.1.

Table 4.1 Comparison of Direct and Indirect Communication

NOTES

Direct Communication Indirect Communication

- Thereexigts only one link between each - Theremay be multiplelinks between

pair of communicating processes. each pair of communicating processes,
where each link corresponds to exadly
one mailbox.

- Alink is associated with just two - A link may be associated with more than
processes. tWO Processes.

- Thelink is established automatically - The communication link can be
between the communicating processes, establi shed between two processes only
provided the sender process knows the if both the communicating processes
PID of thereceiver process. share amailbox with each other.

M essage Synchronization

M essages can be sent or received either synchronously or asynchronously,
also called blocking or non-blocking, respectively. Variousdesign optionsfor
implementing send () andreceive () calsareasfollows:

- Blocking Send: If aprocess (say, P,) invokes send () call tosend a
message to another process (say, P,) or to amailbox, the operating system
blocks P, until themessageisreceived by P, or by the mailbox.

- Blocking Receive: If thereisno messageavailablefor P, whenitinvokes
thereceive () system cal, the operating system blocksit until some
messagearrivesforit.

- Non-Blocking Send: P, sendsthe message and continuesto performits
operation without waiting for the message delivery by P, or by mailbox.

- Non-Blocking Receive: When P, invokesareceive () cal, it either
getsavalid messageif somemessageisavailableforit or NULL if thereis
no messageavailableforit.

Buffering

Asdiscussed earlier, themessages sent by aprocessaretemporarily set asideina
temporary queue (also called buffer) by the operating system before delivering
them to therecipient. Thisbuffer can beimplemented inavariety of ways, which
areasfollows:

- No Buffering: The capacity of buffer iszero, that is, no messages may
wait in the queue. Thisimpliesthe sender process hasto wait until the
messageisreceived by therece ver process.

Self-Instructional
Material 85

Processesin Operating

System

86

NOTES

Self-Instructional
Material

- Bounded Buffer: Thecapacity of thebuffer isfixed, say m, that is, at most

m processes may wait in the queue at atime. Whentherearelessthanm
messageswaiting inthe queue and anew messagearrives, itisadded tothe
queue. Thesender process need not wait inthequeueand it canresumeits
operation. However, if thequeueisfull, the sender processisblocked until
some spaceismade availableinthe queue.

- Unbounded Buffer: Thebuffer hasan unlimited capacity, that is, aninfinite

number of messages can be stored inthe queuefor execution. Inthiscase,
the sender process never getsblocked.

6. Definezombie process.

Check Your Progress

What arethetwo important communi cation modelsused for providing
IPC?

Statethedifferencebetween direct andindirect communi cation of processes.
Differentiate between the bounded and unbounded buffer.

4.6

ANSWERS TO CHECK YOUR PROGRESS

A processcomprisesof not only the program code (known astext section)
but al so aset of global variables (known as data section) and the Process
Control Block (PCB). The process control block of aprocess contains
some additional information about the processlikeaprogram counter to
specify the current activity in progress, the contents of CPU’s registers, a
process stack to store temporary data like function parameters, local
variablesusedinafunction, return addresses, and so on.

Each process in the operating system tagged with a ‘State’ variable—an
integer valuethat hel psthe operating system to settle conclusively what
should be donewith the active process and al so givesthe evidence of the
nature of the current activity inaprocess. A process may bein one of the
following states depending on the current activity of the process.

Running® Waiting: Thistransition may take placeif thecurrently running
process.

(i) Needsto perform somel/O operation.
(i) Hastowait for amessage or some action from another process.
(i) Requestsfor some other resource.

Inthiscase, the CPU getsrelieved by the process and can be allocated to
someanother ready process.

4. Scheduling Queues Processesin Opg itt':ng
For scheduling purposes, there exist different queuesinthe systemthat are
asfollows
Job Queue: Each process entersthe system for execution. Assoon as
they enter the execution phase, they get into aqueue called job queue
(Or input queue) on amass storage device, such ashard disk.

Ready Queue: From thejob queue, the processeswhich areready for
thethroughput are shifted into the main memory, wherethey are kept
into aqueuecaled ready queue. In other words, theready queuecontains
all those processesthat arewaiting for the CPU.

Device Queue: For each 1/0O devicein the system, a separate queue
called devicequeueismaintained. Theprocessthat needsto perform I/
O duringitsexecutioniskept into the queue of that specific1/0O device
and waitsthereuntil it isserved by thedevice.

5. Transferring the control of CPU from one processto another demandsfor
saving the context of the currently running process and |oading the context
of another ready process. Thismechanism of saving and restoring the context
of the ongoing process is known as context switch. The portion of the
process control block including the process state, memory management
information and CPU schedulinginformation together condtitutesthe context
(also cdled stateinformation) of aprocess.

6. A processthat no longer existsbut still its PCB isnot removed from the
processtableisknown asazombie process.

7. Two basic communication modelsfor providing |PC are shared memory
systemsand message passing systems.

8. Indirect communication, processesaddresseach other by their PID assigned
to them by the operating system. For example, if aprocess P, wantsto
send amessageto process P, then the system calls send() and receive()
will bedefined asfollows:

- send(PID2, message)

- receive(PID1, message)

Inindirect communication, messagesare sent and received viamailbox (also
known as port)—a repository of interprocess messages. Amailbox, as the
nameimplies, isjust likeapost box into which messages sent by the processes
can be stored and removed by other processes.

9. Bounded Buffer: Thecapacity of thebuffer isfixed, say m, thatis, & mostm
processes may wait in the queue at atime. When there are lessthan m
messageswaitinginthequeueand anew messagearrives, itisadded tothe
gueue. The sender processneed not wait inthe queueand it can resumeits
operation. However, if the queueisfull, the sender processisblocked until
some spaceismade availableinthe queue.

NOTES

Self-Instructional
Material 87

Processesin Operating

System

88

NOTES

Self-Instructional
Material

Unbounded Buffer: Thebuffer hasan unlimited capacity, that is, aninfinite
number of messages can be stored inthe queuefor execution. Inthiscase,
the sender process never getsblocked.

4.7

SUMMARY

- A processisaprogram under execution or we can say an executing set of

machine instructions. It can be either a system process executing the system’s
code or a user process executing the user’s code.

- A process comprises not only the program code (known astext section)

but al so aset of global variables (known as data section) and the Process
Control Block (PCB).

- Theset of ingtructions, dataand stack together form the address space of a

process.

- The processesthat involve more computation than I/O operationsthereby

demanding more use of CPU than 1/O devicesduring their lifetimeare
called CPU-bound or computer-bound processes.

- The processes that involve a lot of 1/O operations as compared to

computation during their lifetimearecalled 1/O-bound processes.

- Each process is labelled with a “state’ variable—an integer value that helps

the operating system to decidewhat to do with the process. It indicatesthe
nature of the current activity inaprocess.

- Thevarious possible statesfor aprocess are new, ready, running, waiting

and terminated.

- Thechangein state of aprocessisknown as state transition of aprocess

and is caused by the occurrence of some event inthe system.

- To keep track of al the processesin the system, the operating system

maintainsatablecalled processtablethat includes an entry for each process.
Thisentry iscalled Process Control Block (PCB).

- A processcontrol block storesdescriptiveinformation pertaining to aprocess

such as, its state, program counter, memory management information,
information about itsscheduling, al ocated resources, accounting information,
and so on, that isrequired to control the process.

- Theprocedure of determining the next processto be executed on the CPU

iscalled process scheduling and themodul e of operating system that makes
thisdecisoniscaled thescheduler.

- Astheprocesses enter the system for execution, they arekept into aqueue

calledjob queue (or input queue).

- Fromthejob queue, the processeswhich areready for the execution are
brought into the main memory. In the main memory, these processesare
kept into aqueue called ready queue.

- For each 1/O deviceinthe system, aseparate queue called device queueis
maintained. Theprocessthat needsto perform I/O duringitsexecutionis
kept into the queue of that specific 1/0 deviceand waitsthereuntil itis
served by thedevice.

- Thelong-term scheduler d so known asjob scheduler or admission scheduler
selectsthe next processto be executed from thejob queueand loadsit into
themain memory for execution.

- Theshort-term scheduler also known as CPU scheduler or process scheduler
selectsaprocessfrom the ready queue and alocates CPU toit.

- Themedium-term schedul er dso known asswapper sl ectsaprocessamong
the partially executed or unexecuted swapped-out processesand swapsit
inthemanmemory.

- Transferring the control of CPU from one processto another demandsfor
saving the context of the currently running process and |oading the context
of another ready process. Thistask of saving and restoring the context is
known as context switch.

- Theportion of theprocesscontrol block including the processstate, memory
management information and CPU scheduling informati ontogether congtitute
the context (al so called stateinformation) of aprocess.

- A user process may create one or more processes during its execution by
invoking the processcreation system call.

- Thetask of creating anew process on therequest of someanother process
is called process spawning. The process that spawns a new processis
called parent process whereas the spawned processis called the child
process.

- When aprocessisterminated, all the resources held by the process are
dedllocated, the processreturns output data(if any) toitsparent and finaly,
the processis removed from the memory by deleting its PCB from the
processtable.

- A processthat nolonger existsbut still its PCB isnot removed from the
processtableisknown asazombie process.

- Theprocessesthat coexist inthememory a sometimearecalled concurrent
processes. The concurrent processes may either be independent or
cooperating.

- Theindependent (al so called competitors) processes, asthenameimplies,
do not share any kind of information or datawith each other.

Processesin Operating

NOTES

Self-Instructional
Material

System

89

Processesin Operating

System

90

NOTES

Self-Instructional
Material

- Thecooperating (also ca led interacting) processes, onthe other hand, need

to exchange dataor information with each other.

- Thecooperating processes require some mechanism to communicate with

each other. One such mechanism is Interprocess Communication (IPC)—
afacility provided by the operating system.

- Two basic communication modelsfor providing |PC are shared memory

systemsand message passing systems.

- In shared memory systems, a part of memory is shared among the

cooperating processes. The processes that need to exchange data or
information can do so by writing to and reading from this shared memory.

- Inmessagepassing systems, cooperati ng processescommunicateby sending

and receiving messages from each other. The system calls, send () and
receive () areused to send and recel ve messages, respectively.

- Processes may communicate with each other directly or indirectly. Inthe

direct communication, processes address each other by their PID assigned
to them by the operating system. Inindirect communication, messagesare
sent and received via mailbox—a repository of interprocess messages.

- A mailbox, asthenameimplies, isjust likeapost box into which messages

sent by the processes can be stored and removed by other processes.

- Messages can be sent or received either synchronoudly or asynchronoudly,

a so called blocking or non-blocking, respectively.

4.8

KEY WORDS

- New state: Aprocessis said to be ina ‘new’ state if it is being created for

thefirsttime.

- Ready state: A process is said to be in a ‘ready’ state if it is ready for the

execution and waiting for the CPU to beallocated to it.

- Running state: Aprocess is said to be ina ‘running’ stateif CPU hasbeen

dlocatedtoit anditisbeing executed.

- Waiting state: A process is said to be in a ‘waiting’ state if it has been

blocked by some event.

- Bounded-buffer problem: In case of bounded buffer, the producer-

consumer problemisaso known asbounded- buffer problem.

4.9

SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

H

[N
o

© 0O N O A WN

. Define PCB.

. Statethedifferent states of transition of the process.

. Distinguish between CPU-bound and I/0O-bound processes.

. Listthreeimportant fiel dsthat are stored in aprocess control block.

. Whatisthesgnificanceof processidentifier?

. Definethevarioustypes of schedulersinacomplex operating system.

What arethereasons dueto which context switch occurs?

. What iscontext switching?

. Define synchronous process crestion.

. What do you understand by interprocess communi cation?
11.

Statethe definitions of message synchronization and buffering.

Long-Answer Questions

1
2.

Discussthevarious states of aprocesswith the help of adiagram.

Describethe eventsunder which statetransitions between ready, running

and waiting takeplace.

. Distinguish among long-term schedul er, short-term schedul er and medium-

term scheduler.

. Describethedifferent modd sused for interprocess communication. Which

oneisbetter?

. Elaborate the concept of processes, types of schedulers and operations

carried by the processes.

. lllustrate on the significance of scheduling queuesand itstransition- based

classficationsof processes.

4.10 FURTHER READINGS

Silberschatz, Abraham, Peter B. Galvin and Greg Gagne. 2008. Operating System

Tanenbaum, Andrew S. 2006. Operating Systems Design and | mplementation,

Concepts, 8th Edition. New Jersey: JohnnWiley & Sons.

3rd Edition. New Jersey: Prentice Hdll.

Processesin Operating

NOTES

Self-Instructional
Material

System

91

Processesin Operating
System

92

NOTES

Self-Instructional
Material

Tanenbaum, Andrew S. 2001. Moder n Operating Systems. New Jersey: Prentice
Hal.

Deitel, Harvey M. 1984. An Introduction to Operating Systems. Boston (US):
Addison-Wedey.

Sdlings, William. 1995. Operating Systems, 2nd Edition. New Jersey: Prentice
Hdl.

Milenkovic, Milan. 1992. Operating Systems. Conceptsand Design. New York:
McGraw Hill Higher Education.

Mano, M. Morris. 1993. Computer System Architecture. New Jersey: Prentice
Hdl Inc.

Process Scheduling

UNIT 5 PROCESS SCHEDULING

Sructure NOTES
5.0 Introduction
5.1 Objectives
5.2 Process Scheduling Concepts
5.3 Scheduling Criteria
5.4 SchedulingAlgorithms
54.1 Multilevel Feedback Queue Scheduling
5.5 MultipleProcessor Scheduling
5.6 Answersto Check Your Progress Questions
5.7 Summary
5.8 Key Words
5.9 Sdf-Assessment Questions and Exercises
5.10 Further Readings

5.0 INTRODUCTION

Process scheduling (or CPU scheduling) isthe procedure employed for deciding
astowhich of theready processes, the CPU should beall ocated. CPU scheduling
playsapivotal roleinthe basicframework of an operating system owingto the
fact that CPU isthecentrd unit of any computer system. No computer can operate
properly intheabsenceof CPU. Theagorithm used by the scheduler to carry out
the selection of aprocessfor effective execution isknown asscheduling a gorithm.
Thereare umpteenth number of tasksat hand for CPU scheduling.

Each schedulingd gorithmisrespongblefor regulaingtheresourceutilization,
overal system performance and quality of serviceprovided to theuser. Therefore,
onehasto reason out anumber of criteriawhilefixing anagorithmfor anachieving
desired prerequisiteson aparticular system.

Inthisunit, you will study the concept of process scheduling, scheduling
criteriaand a gorithms, multiple processor scheduling.

5.1 OBJECTIVES

After going throughthisunit, youwill beableto:
- Understand the basi c concepts of scheduling
- Discussthecriteriafor scheduling
- Explanvariousschedulingagorithms
- Discussscheduling for multiprocessor systems

Self-Instructional
Material 93

Process Scheduling

94

NOTES

Self-Instructional
Material

5.2 PROCESS SCHEDULING CONCEPTS

Beforewestart discussing about the scheduling criteriaand scheduling agorithms
comprehensively, wewill first takeinto account some comparatively important
conceptsof scheduling which are mentioned underneeth.

Pr ocess Behaviour

Thereaction and response of aprocesswhileit isintheexecution phase highly
influences CPU scheduling.. Virtudly, thereisacontinuousinterchange of processes
between CPU (for processing) and 1/O devices (for performing 1/O) during the
period of execution. Thetime period e apsed in processing before performing the
next I/O operationisknownasCPU bur & andthetimeperiod dgpsedin performing
I/O before the next CPU burst isknown as 1/O bur st. Generally, the process
execution startswith aCPU burst, followed by an 1/0 burst, then again by aCPU
burst and so onuntil the processterminates. Thus, we can say the processexecution
includesalternate cyclesof CPU and I/O burst. Figure 5.1 showsthe sequence of
CPU and I/O bursts upon the execution of thefoll owing code segment writtenin

Clanguage.

i =1; /* CPU bur st
*/
sun¥o;
scanf(“%d™”, &num); /* 110 burst */
while (i <= 10) /* CPU bur st
*/
{ .

sum += num?* i;

i =i + 1;

Fig 5.1 Alternate Cycles of CPU and I/O Bursts

Thelength of CPU burst and thel/O burst variesfrom processto process
depending on whether the processis CPU-bound or 1/0-bound. If the processis
CPU-bound, it will havelonger CPU burstsas compared to 1/0 burstsand vice
versain casethe processis|/O-bound. From the scheduling perspective, only the
length of CPU burst istaken into consideration and not thelength of 1/0 burst.

When to Schedule

Animportant facet of scheduling isto determine under what circumstancesthe
scheduler should be initiated to make scheduling decisions. The following
circumstances may requirethe schedul er to make scheduling decisions.

- When aprocess switchesfrom running to waiting state. Such asituation
cropsup, incase, the processhastowait for 1/0 or thetermination of its
child processor some another reason. In such situations, the scheduler has
to select someready processfor execution.

- When aprocess switchesfrom running to ready state dueto occurrence of Process Scheduling
aninterrupt. In such situation, the scheduler may decideto run aprocess
from theready queue. If theinterrupt was caused by somel/O devicethat
has now completed itstask, the schedul er may choosethe processthat was
blocked waiting for thel/O. NOTES

- When aprocessswitchesfromwaiting stateto ready state, for example, in
case, the process has compl eted its 1/0O operation. In such situation, the
scheduler may select either the processthat has now comeinto theready
state or the current process may be continued.

- When aprocessterminatesand exitsthe system. Inthiscase, the scheduler
hasto select aprocessfor execution from the set of ready processes.

Dispatcher

Themainam of short-term schedul er isto opt for aprocessto be performed next
on the CPU but it cannot allocate CPU to the selected process. The basic
resposibility of setting up the execution of the selected processonthe CPU is
performed by someother moduleof the operating system, called dispatcher. The
dispatcher involvesthefollowing three stepsto perform thisfunction.

(i) Thedispatcher performscontext switching that is switching the CPU to
another process. Thekernd savesthe context of currently running process
and restoresthe saved state of the process selected by the CPU scheduler.
In case, the process sel ected by the short-term schedul er isnew, thekernel
loadsits context.

(i) Thesystem switchesfrom thekernel modeto user modeasauser process
isto be executed.

(i) Theexecution of the user process selected by the CPU scheduler is started
by transferring the control either to theinstruction that was supposed to be
executed at thetimethe processwasinterrupted or to thefirstinstruction if
the processisgoing to be executed for thefirst time after its creation.

5.3 SCHEDULING CRITERIA

The scheduler must consder thefollowing parametersand optimization criteriasin
order to maximizethe performance of the system. Following mentioned are some
of thecriteriasthat hel p tojudgethe performance.

- Fairness: Generally, CPU isbusy performing varied tasks.Fairnessis
defined asthe degree to which each processis getting an equal chanceto
execute. The scheduler must ensure that each process should get afair
shareof CPU time. However, it may treat different categoriesof processes
(batch, real-time, or interactive) in adifferent manner.

Self-Instructional
Material 95

Process Scheduling

96

NOTES

Self-Instructional
Material

- CPU Utilization: Itisdefined asthe percentage of timethe CPU isotherwise
engaged in carrying out processes. To ensure better utilization, CPU must
bekept asbusy aspossible, that is, there must be some process running
everytime.

- Balanced Utilization: It isdefined asthe percentage of timed| thesystem
resourcesarebusy. It consdersnot only the CPU utilization but theutilization
of 1/O devices, memory, and other resourcesa so. To get morework done
by thesystemn, the CPU and 1/0O devices must bekept running smultaneoudy.
For this, it isdesirableto |oad amixture of CPU-bound and 1/0-bound
processesinthememory.

- Throughput: It isdefined asthetotal number of processesthat asystem
can execute per unit of time. By and large, it dependson theaveragelength
of the processesto be executed. For the systems running long processes,
throughput will belessascompared to the systemsrunning short processes.

- Turnaround Time: It isdefined astherelative amount of timethat has
rolled by from thetimeof initiation to thetime of termination of aprocess.
To put it differently, it isthedifference between thetimeaprocessenters
the system and thetimeit exitsfrom the system. It includesal thetimethe
process has spent waiting to enter into ready queue, within ready queueto
get CPU, running on CPU, andin /O queues. It isinversely proportiond to
throughput, that is, the moreisthe turnaround time, the lesswill bethe
throughput.

- Waiting Time: Itisdefined asthetimeused up by the processwhile waiting
intheready queue. However, it does not take into account the execution
timeor time consumed for I/O. In practice, waiting timeismoreaccurately
measured as compared to turnaround time.

- Response Time: Itisdefined asintervening timebetween thetimethe user
initiates arequest and the system starts responding to this request. For
interactive systems, itisoneof the best metric syetemsempl oyed to gauge
the performance becausein such systems, only the speed withwhich the
system responds to user’s request matters and not the time it takes to output
theresponse.

Thebasic purpose of a CPU scheduling algorithm isthat it should manage to
makethe best of fairness, CPU utilization, balanced utilization and throughput,
and minimizeturnaround, waiting and response time. Pratically speaking, no
scheduling dgorithm optimizesdl thescheduling criteria. Thusthe performance of
andgorithmiseva uated on thebasis of certain assumptionsand averagemeasures.
For example, an agorithm that minimizesthe averagewaiting timeisconsidered
asagood a gorithm because thisimprovesthe overal efficiency of the program.
However, in caseof responsetime, minimizing theaverageisnot agood criterion
rather thevariancein the responsetime of the processes should be minimized.

Thisisbecauseit isnot desirableto have aprocesswith long responsetime as
compared to other processes.

5.4 SCHEDULING ALGORITHMS

The performance of any system depends almost as much on proper software
setup as it does on your computer’s hardware peripherals. To maximize the
functioning, abroad range of a gorithmsare used for the CPU scheduling. These
scheduling algorithms fall into two categories, namely, non-preemptive and
preemptive.
- Non-Preemptive SchedulingAlgorithms. Oncethe CPU isallocated to
aprocess, it cannot be taken back until the processvoluntarily releasesit
(in casetheprocesshastowait for I/0 or some other event) or the process
terminates. In other words, we can say the decision to scheduleaprocess
ismadeonly whenthecurrently running processether switchesto thewaiting
state or terminates. In both cases, the CPU executes some other process
from the set of ready processes.

- Preemptive SchedulingAlgorithms: The CPU can beforcibly taken back
from the currently running process beforeits compl etion and allocated to
some other process. The preempted processis put back in the ready queue
and resumesitsexecution whenit isscheduled again. Thus, aprocessmay
be scheduled many timesbeforeits completion. In preemptive scheduling,
the decision to schedul e another processis made whenever an interrupt
occurs causing the currently running processto switch to ready stateor a
process having higher priority than the currently running processisready to
execute.

Note: A non-preemptive scheduling algorithmis also known asa cooperative or voluntary
scheduling algorithm.

First-Come Fir st-Served Scheduling

First-Come First-Serve (FCFS) isone of thesmplest scheduling algorithms. As
the nameimplies, the processes are executed in the order of their arrival inthe
ready queue, which meansthe processthat enterstheready queuefirst getsthe
CPU first. Toput it differently, it meansthe processthat comesinfirstismanaged
first and the processesthat comein subsequently waitinthequeueuntil thefirstis
completed. FCFSisanon-preemptive scheduling agorithm. Therefore, oncethe
CPU isallocated to the process, it retains the control of CPU until it blocksor
terminates.

To implement FCFS scheduling, the implementation of ready queueis
managed asaFIFO (First-In First-Out) queue. When thefirst process entersthe
ready queue, itimmediately getsthe CPU and startsexecuting. Meanwhile, other
processes enter the system and are added to the end of queue by inserting their

Process Scheduling

NOTES

Self-Instructional
Material

97

Process Scheduling PCBsinthe queue. When the currently running process completes or blocks, the
CPU isalocated to the process at thefront of the queueand itsPCB isremoved
from the queue. In case, acurrently running process was blocked and later it
comesto theready state, its PCB islinked to theend of queue.

Example5.1: Consider four processesP,, P,, P,, and P, withtheir arrival times

and required CPU burst (in milliseconds) asshown inthefollowing table.

NOTES

Process P. P, Ps P,
Arrival time 0 2 3 5
CPU burst (ms) 15 6 7 5

How will these processes be schedul ed according to FCFS scheduling
agorithm? Computetheaverage waiting time and averageturnaround time.

Solution: The processeswill be scheduled as depicted in thefollowing Gantt
chart.

Py P, P; Py

0 15 21 28 33

Initidly, P, enterstheready queueat t=0and CPU isallocatedtoit. While
P, isexecuting, P,, P, and P, enter the ready queueat t=2,t=3,andt =5,
respectively. When P, completes, CPU isalocated to P, asit has entered before
P, and P,. When P, completes, P, getsthe CPU after which P, getsthe CPU.

Waitingtimefor P, =0msasP, startsimmediately

Waitingtimefor P,=(15-2) =13 msas P, entersat t = 2 and startsat t
=15

Waitingtimefor P,= (21 -3) =18 msas P entersat t = 3and startsat t
=21

Waitingtimefor P,= (28 -5) =23 msas P, entersat t =5 and startsat t
=28

Averagewaitingtime=(0+ 13+ 18+ 23)/4=13.5ms

Turnaroundtimefor P, =(15-0)=15msas P, entersatt =0 and exitsat
t=15

Turnaroundtimefor P,=(21-2) =19 msas P, entersat t = 2 and exitsat
t=21

Turnaroundtimefor P,= (28 - 3) =25 ms as P_entersat t = 3and exitsat
t=28

Turnaroundtimefor P,=(33-5) =28 msas P, entersat t =5 and exitsat
t=33

Averageturnaround time= (15+ 19+ 25+ 28)/4=21.75ms

Self-Instructional
98 Material

The performance of FCFS scheduling algorithm largely depends on the
order of arrival of processesin theready queue. That is, whether the processes
havinglong CPU burst enter beforethose having short CPU burst or viceversa.
Toillustratethis, assumethat the processes (shown in Example 2.1) enter the
ready queueintheorder P,, P,, P, and P,. Now, the processes will be scheduled
asshowninthefollowing Gantt chart.

0 5 11 18 33
Averagewaitingtime=(0+ (5-2) + (11-3) + (18 -5))/4 =6 ms

Averageturnaround time=((5-0) + (11-2) + (18-3) + (33-5))/4
=14.25ms

Itisclear that the average waiting and turnaround time may be cut down
margindly if the processes having shorter CPU burst execute beforethose having
longer CPU burst.

Advantages

- Itiseasier to understand and implement as processes areto be added at
theend and removed from thefront of queue. Thisprocesshe pto manipulate
data effectively asthe processes cannot be accessed from the middle of
queuewhich meansit aways proceedsin sequentially.

- Itiswell suited for batch systemswherethelonger time periodsfor each
process are often acceptable.

Disadvantages

- Theaveragewaitingtimeisnot minimal, that is, it variesfrom processto
process. Therefore, thisscheduling agorithmisnever recommended where
performanceisamajor issue.

- It reducesthe CPU and I/0 devices utilization under some circumstances.
For example, assumethat thereisonelong CPU-bound processand many
short 1/0O-bound processesin the ready queue. Now, it may happen that
while the CPU-bound process is executing, the 1/0-bound processes
completetheir 1/0O and cometo theready queuefor execution. Therethey
haveto wait for the CPU-bound processto rel ease the CPU and the I/O
devicesalso remainidleduring thistime. When the CPU-bound process
needsto perform /0O, it comesto the devicequeue and the CPU isallocated
to 1/0-bound processes. Asthel/O-bound processesrequirealittle CPU
burst, they execute quickly and come back to the device queue thereby
leaving the CPU idle. Thenthe CPU-bound process enterstheready queue
andisallocated the CPU which again makesthel/O processeswaitingin
ready queue at some point of time. This process takes place repeatedly
until the CPU-bound processis donewhich resultsinlow CPU and I/O
devicesuitilization.

Process Scheduling

NOTES

Self-Instructional
Material

99

Process Scheduling - Itisnot suitablefor timesharing sysemswhereitisdesirable each process
should get theequal amount of CPU time.

Shortest Job First Scheduling

NOTES Shortest Job First (SJF), aso known as Shortest Process Next (SPN) or
Shortest Request Next (SRN), isanon-preemptive scheduling a gorithm that
schedulesthe processes according to thelength of CPU burst they require. At any
point of time, among al the ready processeswaiting in the queueto be executed,
the one having the shortest CPU burst is scheduled first. In other words, the
processwith the shortest execution is selected for the execution. Thus, alonger
process hastowait until al the processes shorter than it have been executed. In
case two processes have the same CPU burst, they are scheduled inthe FCFS
order.

Example5.2: Consider four processesP,, P,, P, and P, withtheir arrival times
and required CPU burst (in milliseconds) asshown inthefollowing table.

Process P: P, Ps P,
Arrival time 0 1 3 4
CPU burst (ms) 7 5 2 3

How will these processes be scheduled according to SJF scheduling
agorithm? Computethe averagewaiting timeand average turnaround time.

Solution: The processeswill be scheduled asdepicted inthefollowing.

Pl P3 P4 P2

0 7 9 12 17

Initidly, P, enterstheready queueat t = 0 and getsthe CPU asthereareno
other processesinthequeue. Whileitisexecuting, P,, P, and P, enter thequeue
att=1,t=3andt =4, respectively. When CPU becomesfree, thatis, att =7,
itisalocated to P, becauseit ishaving the shortest CPU burst among the three
processes. When P, completes, CPU isdlocated firstto P, andthento P,.

Waitingtimefor P, =0msasP, startsimmediately

Waitingtimefor P,=(12-1) =11 msasP, entersat t = 1 and startsat t
=12

Waitingtimefor P,=(7-3)=4msas P entersatt =3and tartsat t =7

Waitingtimefor P,=(9-4)=5msasP, entersatt =4 and Startsat t =9

Averagewaitingtime=(0+11+4+5)/4=5ms

Turnaroundtimefor P, = (7-0)=7msas P entersat t = 0 and exitsat
t=7

Turnaroundtimefor P,=(17-1) =16 msas P entersat t = 1 and exitsat
t=17

Self-Instructional
100 Material

Turnaround timefor P, = (9 -3) =6 msas P_entersat t = 3 and exits at Process Scheduling
t=9

Turnaround timefor P, = (12-4) =8 msas P, entersat t =4 and exitsat
t=12

Averageturnaround time=(7+ 16+ 6+ 8)/4=9.25ms

NOTES

Advantages

- It eliminates the variance in waiting and turnaround times,, It is
incontrovertibly superlative with respect to average waiting timeif all
processes areavail able at the sametimedueto thefact that short processes
aregiventhehighest priority in comparisontothe longoneswhichresultsin
immense decrement of thewaiting timefor short processes. Accordingly,
thewaitingtimefor long processesisincreased. However, thediminuitionin
waiting timeisrédatively morethan theincrement inwaitingtimeand thus,
the average waiting time decreases.

Disadvantages

- Itisquiteintricateto implement becauseit needsto befamiliarized with the
exact length of CPU burst of processesin advance. Redligtically, itisquite
impractical to havethe prior knowledge of required processing time of
processes. Many systemsexpect usersto provide estimates of CPU burst
of processeswherethere are maximum feasibilitiesof errorneous ones.

- It favoursthe processes having short CPU burst because aslong asthe
short processes continue to enter the ready queue, thelong processesare
not alowed to get the CPU. Thisresultsin star vation of long processes.

Shortest Remaining Time Next Scheduling

The Shortest Remaining Time Next (SRTN) also known as Shortest TimeTo
Go(STG), isapreemptiveversion of the SIF scheduling algorithm. It takesinto
account thelength of remaining CPU burst of the processesrather thanthewhole
length in order to schedule them. Here al so the schedul er always choosesthe
processfor execution that hasthe shortest remaining processing time. Whilea
processis being executed, the CPU can betaken back from it and assigned to
somenewly arrived processif the CPU burst of thenew processisshorter thanits
remaining CPU burst. Noticethat if at any point of time, theremaining CPU burst
of two processes becomes equal ; they are scheduled inthe FCFS order.

Example5.3: Consider the same set of processes, their arrival timesand CPU
burst asshownin Example5.2. How will these processes be schedul ed according
to SRTN scheduling a gorithm? Computethe average waiting timeand average
turnaroundtime.

Solution: The processeswill be schedul ed as depicted in thefollowing Gantt
chart.

Self-Instructional
Material 101

Process Scheduling

102

NOTES

Self-Instructional
Material

Pl P, = P, P, P

0 1 3 5 8 11 17

Initidly, P, enterstheready queueat t = 0 and getsthe CPU asthereareno
other processesinthe queue. Whileitisexecuting, at timet =1, P, with CPU
burst of 5 msentersthequeue. At that timetheremaining CPU burst of P, is6 ms
whichisgreater thanthat of P,. Therefore, the CPU istaken back from P, and
alocatedto P,. During execution of P,, P, entersat t = 3withaCPU burst of 2
ms. Again CPU isswitched from P, to P, astheremaining CPU burst of P, at t =
3is3mswhichisgreater thanthat of P,. However, when at timet =4, P, with
CPU burst of 3 msentersthe queue, the CPU isnot assigned to it because at that
timetheremaining CPU burst of currently running process (that is, P,) is1 ms
whichisshorter thanthat of P,. When P, completes, thereare three processes P,
(6ms), P, (3ms) and P, (3 ms) inthe queue. To break thetie between P, and P,,
thescheduler takesinto consideration their arrival order and the CPU isdlocated
firsttoP,, thento P, andfindly, toP,.

Waitingtimefor P, = (11-1) =10 msas P, entersat t = 0, executesfor 1
ms, preemptsat t = 1, and thenresumesat t = 11

Waitingtimefor P,=(5-2-1)=2msas P, entersat t = 1, executesfor
2ms, preemptsat t = 3, and thenresumesatt =5

Waiting timefor P,=0msasP,entersat t = 3, startsimmediately and
executescompletely

Waitingtimefor P,= (8 -4)=4msas P, entersat t =4, startsat t =8 and
executescompletely

Averagewaitingtime=(10+2+0+4)/4=4ms

Turnaroundtimefor P, =(17-0)=17msas P, entersat t =0 and exitsat
t=17

Turnaround timefor P,= (8 -1) =7msas P,entersat t = 1 and exitsat
t=8

Turnaround timefor P,= (5-3) =2msas P entersat t = 3 and exitsat
t=5

Turnaroundtimefor P, =(11-4)=7msasP entersat t =4 and exits at
t=11
Averageturnaround time=(17+7+2+7)/4=8.25ms
Advantages

- Along processthat isnear toits compl etion may befavoured over the short
processes entering the system. This results in an improvement in the
turnaround time of thelong process.

Disadvantages

- Like SJF, it also requiresan estimate of the next CPU burst of aprocessin
advance.

- Favouring along process nearing its completion over the several short
processes entering the system may impact the turnaround times of short
processeswaitinginthequeue.

- Itfavoursonly thoselong processesthat arejust about to completeand not
thosewho havejust started their operation. Thus, Starvation of long processes
still may occur.

Priority-Based Scheduling

Asthenameimplies, in priority-basad scheduling agorithm, eech processismanudly
assigned apriority and the processthat is assigned the higher priority processis
scheduled before the lower priority process. At any point of time, the process
having the highest priority among all the ready processesisscheduled first. In
case, two processes are having the samepriority, they are executed in the FCFS
order.

The priority scheduling may beeither preemptiveor non-preemptive. The
choiceismadewhenever anew processenterstheready queuewhile some process
isexecuting. If thenewly arrived process hasthe higher priority than the currently
running process, the preemptive priority scheduling agorithm preemptsthecurrently
running process and allocates CPU to the new process. On theother hand, the
non-preemptive scheduling algorithm allowsthe currently running processto
completeitsexecution and the new process hasto wait for the CPU.

Note: Both SIF and SRTN are special casesof priority-based scheduling
where priority of a processis equal to inverse of the next CPU burst. Lower
isthe CPU burst, higher will be the priority.

A major designissuerelated with priority scheduling ishow to compute
prioritiesof theprocesses. The priority can beassgned to aprocesseither internaly
defined by the system depending on the process’s characteristics like memory
usage, 1/0 frequency, usage cost, and so on, or externally defined by the user
executing that process.

Example5.4: Consider four processesP,, P, P,, and P, with their arrival times,

required CPU burst (inmilliseconds), and priorities as shown in thefollowing
table.

Process P: P, Ps P4
Arrival time 0 1 3 4
CPU burgt (ms) 7 4 3 2
Priority 4 3 1 2

Assuming that thelower priority number meansthe higher priority, how will
these processes be schedul ed according to non-preemptive aswel l aspreemptive
priority scheduling a gorithm? Compute the average waiting time and average
turnaround timein both cases.

Process Scheduling

NOTES

Self-Instructional
Material

103

Process Scheduling Solution: Non-PreemptivePriority SchedulingAlgorithm
The processeswill be scheduled as depicted inthefoll owing Gantt chart.

NOTES P1 Ps P4 P
0 7 10 12 16

Initidly, P, enterstheready queueat t = 0 and getsthe CPU asthereareno
other processesin the queue. Whileit isexecuting, P,, P,, and P, enter the queue
at=1,t=3,andt =4, respectively. When CPU becomesfree, that is, at t =7,
itisallocated to P, becauseit ishaving the highest priority (that is, 1) anong the
three processes. When P, completes, CPU isall ocated to the next lower priority
process, that is, P, and findly, the lowest priority processP, is executed.

Waitingtimefor P, =0msasP, startsimmediately

Waiting timefor P,=(12-1) =11 msas P, entersat t = 1 and Starts at
t=12

Waitingtimefor P,=(7-3)=4msasP_ entersatt = 3and startsat t =7

Waiting timefor P, = (10 -4) =6 msas P, entersat t = 4 and starts at
t=10
Averagewaitingtime=(0+ 11+ 4+ 6)/4=5.25ms

Turnaroundtimefor P, = (7-0)=7msas P entersat t = 0 and exitsat

t=7

Turnaroundtimefor P,= (16 -1)=15msas P entersat t = 1 and exitsat
t=16

Turnaroundtimefor P,=(10-3) =7msas P_entersat t = 3 and exits at
t=10

Turnaroundtimefor P,=(12-4) =8 msas P, entersat t =4 and exits at
t=12

Averageturnaround time=(7+15+ 7+ 8)/4=9.25ms
Preemptive Priority Scheduling Algorithm
The processes will be scheduled as depicted in the following Gantt chart.

Pl Pz P3 P4 Pz P]_

0 1 3 6 8 10 16

Initidly, P, of priority 4 enterstheready queueat t = 0 and getsthe CPU as
thereareno other processesinthequeue. Whileitisexecuting, at timet =1, P, of
priority 3 greater than that of currently running process P, enters the queue.
Therefore, P, ispreempted (with remaining CPU burst of 6 ms) andthe CPU is
dlocated to P,. During execution of P,, P, of priority 1 entersatt = 3. Again CPU
isswitched from P, (with remaining CPU burst of 2 ms) to P, asthepriority of P,
isgreater than that of P,. However, when at timet =4, P, of priority 2 entersthe
queue, the CPU isnot assigned to it becauseit has|ower priority than currently

Self-Instructional
104 Material

running process P.. When P, compl etes, there arethree processesP,, P,,and P,

intheready queue having priorities4, 3, and 2, respectively. The CPU isdlocated
firsttoP,, thento P, andfinallytoP,.

Waitingtimefor P, = (10-1)=9msas P, entersatt =0, executesfor 1
ms, preemptsatt =1 andthenresumesatt =11

Waitingtimefor P,= (8 -2-1)=5msas P, entersat t = 1, executesfor
2ms, preemptsat t =3 and thenresumesatt =8

Waiting timefor P,=0msasP, entersat t = 3, startsimmediately and
executescompletely

Waitingtimefor P,=(6-4)=2msasP, entersat t =4, startsat t =6 and
executescompletely
Averagewaitingtime=(9+5+0+2)/4=4ms

Turnaroundtimefor P, = (16 -0) = 16 msas P, entersat t =0 and exitsat
t=16

Turnaround timefor P,=(10-1) =9 msas P, entersat t = 1 and exitsat
t=10

Turnaround timefor P,= (6 —3) =3 msas P entersat t = 3 and exits at
t=6

Turnaround timefor P, = (8 —4) =4 msas P, entersat t = 4 and exits at
t=8
Averageturnaround time=(16+9+ 3+4)/4=8ms
Advantages

- Important processes are dways executed first without | etting them to wait
in the queue because of the least priority execution of less important
processes.

Disadvantages

- It suffersfrom the problem of starvation of lower priority processes, because
of theconstant arrival of higher priority processes. It seldom gives chance
to lower priority processesto acquirethe CPU. Onepossiblesolutionto
thisproblemisaging whichisaprocessof gradually increasingthepriority
of alow priority processwithincreaseinitswaitingtime. If the priority of a
low priority processisincreased after eachfixedtimeof intervad, it isensured
that at sometimeit will becomeahighest priority processand will ultimately
get executed.

Highest Response Ratio Next Scheduling

TheHighest ResponseRatio Next (HRN) schedulingisanon-preemptivescheduling
algorithm that schedul esthe processes based on their responseratio. Whenever,

Process Scheduling

NOTES

Self-Instructional
Material

105

Process Scheduling CPU becomesavail able, the process having the highest value of responseratio
among all theready processesis scheduled next. The Response Ratio (RR) of a
processin thequeueis computed by using thefollowing equation.

Time since arrival + CPU burst
CPU burst

NOTES Response Ratio (RR) =

Initialy, when aprocessenters, itsresponseratiois 1. It goesonincreasing
at the rate of (1/CPU burst) as the process’s waiting time increases.

Example5.5: Consider four processesP,, P,, P,, and P, withtheir arrival times
and required CPU burst (in milliseconds) asshowninthefollowing table.

Process P: P, Ps P,
Arrival time 0 2 3 4
CPU burst (ms) 3 4 5 2

How will these processes be scheduled according to HRN scheduling
agorithm? Computetheaverage waiting time and average turnaround time.

Solution: The processeswill be scheduled as depicted in the following Gantt
chart.

0 3 7 9 14

Initidly, P, enterstheready queueat t = 0and CPU isdlocated toit. By the
time P, completes, P, and P, have arrived at t = 2 and t = 3, respectively.
Att =3, theresponseratioof P,is ((3—2) +4)/4=1.25and of P, is1asit has
justarrived. Therefore P, isscheduled next. During execution of P, P, entersthe
queueatt =4. When P, completesat t = 7, theresponseratio of P, is ((7-3) +
5)/5=1.8andof P,is ((7—4) +2)/2=2.5. As P, hashigher responseratio, the
CPU isallocated toit and after itscompletion, P, is executed.

Waitingtimefor P, =0msasP, startsimmediately

Waitingtimefor P,=(3-2)=1msasP,entersatt=2and startsat t =3

Waitingtimefor P,=(9-3)=6msasP, entersatt =3and startsat t =9
Waitingtimefor P,=(7-4)=3msasP, entersatt =4and startsat t =7

Averagewaitingtime=(0+1+6+ 3)/4=25ms

Turnaroundtimefor P, = (3-0) =3 msas P, entersat t = 0 and exitsat
t=3

Turnaround timefor P,= (7-2) =5msas P, entersat t = 2 and exits at
t=7

Self-Instructional
106 Material

Turnaround timefor P, = (14-3) = 11 ms as P entersat t = 3and exitsat Process Scheduling
t=14

Turnaround timefor P, = (9—-4) =5 msas P, entersat t =4 and exits at
t=9

Averageturnaround time=(3+5+11+5)/4=6ms

NOTES

Advantages

- Itfavoursshort processesbecausewithincreasein waiting time, theresponse
ratio of short processesincreases speedily as compared to long processes.
Thus, they are scheduled earlier than long processes.

- Unlike SJF, starvation does not occur sincewith increaseinwaitingtime,
theresponseratio of long processesa so increasesand eventualy they are
scheduled.

Disadvantages

- Like SJFand SRTN, it al so requires an estimate of the expected service
time (CPU burst) of aprocess.

Round Raobin Scheduling

Round Robin (RR) schedulingisoneof themost widdy used preemptive scheduling
agorithmswhich considersall the processesasequally important and treatsthem
inafavourable manner. Each processin the ready queue gets afixed amount of
CPU time (generdly from 10to 100 ms) known astimedlice or timequantum
for itsexecution. If the process does not execute completely till theend of time
dlice, itispreempted and the CPU isallocated to the next processin theready
gueue. However, if the process blocksor terminates before thetime diceexpires,
the CPU isswitched to the next processin theready queueat that moment only.

Toimplement theround robin scheduling agorithm, theready queueistreeted
asacircular queue. All the processesarriving in theready queueare put a theend
of queue. The CPU isallocated to thefirst processin the queue, and the process
executesuntil itstimediceexpires. If the CPU burst of the processbeing executed
islessthan onetime quantum, the processitself releasesthe CPU and isdel eted
from the queue. The CPU isthen allocated to the next processin the queue.
However, if the process does not execute compl etely within thetimedlice, an
interrupt occurswhen thetime slice expires. The currently running processis
preempted, put back at the end of the queue and the CPU isdlocated to the next
processin the queue. The preempted process again gets the CPU after all the
processes beforeit in the queue have been allocated their CPU timesdlice. The
whole process continues until al the processesin queue have been executed.

Example5.6: Consider four processesP,, P,, P, and P, withtheir arrival times

and required CPU burst (in milliseconds) asshowninthefollowing table.

Self-Instructional
Material 107

Process Scheduling Process P, P, Ps P,
Arrival time 0 1 3 4
CPU burgt (ms) 10 5 2 3

Assuming that thetimediceis3ms, how will these processes be schedul ed
according to round robin scheduling d gorithm? Compute theaveragewaitingtime
and averageturnaround time.

NOTES

Solution: The processeswill be scheduled as depicted in the following Gantt
chart.

0 3 6 8 11 14 16 19 20

Initialy, P, enters the ready queue at t = 0 and gets the CPU for 3 ms.
Whileit executes, P, and P, enter thequeueat t = 1 and t = 3, respectively. Since,
P, doesnot executewithin 3ms, aninterrupt occurswhenthetimedicegetsover.
P, ispreempted (with remaining CPU burst of 7 ms), put back inthequeue after
P, because P, has not entered yet and the CPU isallocated to P,. During execution
of P, P, entersinthe queueat t = 4 and put at theend of queue after P.. WhenP,
timesout, it ispreempted (with remaining CPU burst of 2ms) and put back at the
end of queueafter P,. The CPU isall ocated to the next processin the queue, that
is, to P, and it executescompletely beforethetimediceexpires. Thus, theCPU is
dlocated to the next processin the queuewhichisP,. P, again executesfor 3 ms,
then preempted (with remaining CPU burst of 4 ms) and put back at the end of
the queue after P, and the CPU isallocated to P,. P, executes completely within
thetimedliceand the CPU isallocated to next processinthequeue, that is, P,. As
P, completes beforethetime out occurs, the CPU isswitchedto P, at t = 16 for
another 3 ms. Whenthetimesliceexpires, CPU isagaindlocated to P, asitisthe
only processintheqgueue.

Waitingtimefor P, =(5+5) = 10msasP, entersat t =0, tartsimmediately,
waitsfor t = 3-8 and then again waits for t = 11-16

Waiting timefor P,=(3-1+8)=10msasP,entersat t = 1, starts at
t =3, waitsfor t = 6-14 and then resumes at t = 14

Waitingtimefor P,=(6-3)=3msas P entersat t =3, startsat t =6 and
executescompletely

Waitingtimefor P= (11-4)=7msasP, entersat t =4, startsat t = 11
and executes compl etely
Averagewaitingtime=(10+10+3+ 7)/[4=75ms

Turnaroundtimefor P, = (20-0) =20 msas P, entersatt = 0 and exitsat
t=20

Turnaroundtimefor P,= (16 -1)=15msas P entersat t = 1 and exitsat
t=16

Self-Instructional
108 Material

Turnaround timefor P, = (8 —3) =5 ms as P_entersat t = 3 and exits at Process Scheduling
t=8

Turnaroundtimefor P,= (14-4)=10msasP,entersat t =4 and exitsat
t=14
Averageturnaround time=(20+15+5+ 10)/4=12.5ms

Theperformanceof round robin schedulingisgreetly affected by the s ze of
thetime quantum. If thetime quantum istoo smal, anumber of context switches
occur whichinturnincreasethe system overhead. Themoretimewill bespentin
performing context switching rather than executing the processes. On the other
hand, if thetime quantum istoo large, the performance of round robin ssmply
degradesto FCFS.

Note: If the time quantum is too small, say 1 ms, the round robin
scheduling iscalled processor sharing.

NOTES

Advantages

- Itisefficient for timesharing sysemswherethe CPU timeisdivided among
the competing processes.

- Itincreasesthefairness among the processes.

Disadvantages

- Theprocesses (even the short processes) may take along timeto execute.
Thisdecreasesthe system throughput.

- It requires some extrahardware support such asatimer to causeinterrupt
after eechtimeout.

Note: Ideally, the size of time quantum should be such that 80% of the
processes could complete their execution within one time quantum.

Multilevel Queue Scheduling

Themultilevel queueschedulingisdesigned especidly for theenvironmentswhere
the processes can be categorized into different groups onthebasisof their different
response time requirements or different scheduling needs. One possible
categorization may be based on whether the processisasystem process, batch
processor an interactive process (Refer Figure 5.2). Each group of processesis
associated with aspecific priority. The system processes, for example, may have
the highest priority whereas the batch processes may havetheleast priority.

Toimplement multilevel scheduling agorithm, theready queueissplit up
into as many separate queues as there are groups. Whenever, a new process
enters, it isassigned permanently to one of the ready queues dependingonits
propertieslike memory requirements, type and priority. Each ready queuehasits
own scheduling algorithm. For example, for batch processes, FCFS scheduling
algorithm may be used, and for interactive processes, one may use the round

Self-Instructional
Material 109

Process Scheduling

110

NOTES

Self-Instructional
Material

robin scheduling a gorithm. In addition, theprocessesin higher priority queuesare
executed beforethosein lower priority queues. Thisimpliesno batch processcan
run unlessdl the system processes and i nteractive processes have been executed
completely. Moreover, if aprocess entersinto ahigher priority queuewhilea
processin lower priority queueisexecuting, then thelower priority processwould
be preemptedin order to allocate the CPU to the higher priority process.

System processes
[e[efe]e

Highest priority Y

I nteractive processes
— T e [e [o ——F o
Batch processes

Lowest priority

Fig. 5.2 Multilevel Queue Scheduling

Advantages
- Processes are permanently assigned to their respective queues and do not
move between queues. Thisresultsin low scheduling overhead.

Disadvantages
- The processes in lower priority queues may haveto starvefor CPU in case
processes are continuously arriving in higher priority queues. One possible
way to prevent starvation is to time slice among the queues. Each queue
getsa certain share of CPU time which it schedules among the processesin
it. Note that the time dlice of different priority queues may differ.

5.4.1 Multilevel Feedback Queue Scheduling

Themultilevel feedback queue scheduling al'so known asmultilevel adaptive
schedulingisanimproved version of multilevel queuescheduling algorithm. In
thisscheduling d gorithm, processes are not permanently assigned to queues, ingtead
they are alowed to move between the queues. The decision to move aprocess
between queuesisbased on thetimetaken by it in execution sofar anditswaiting
time. If aprocess usestoo much CPU time, itismoved to alower priority queue.
Similarly, aprocessthat hasbeen waiting for toolonginalower priority queueis
moved to ahigher priority queuein order to avoid starvation.

To understand thisagorithm, consi der amultilevel feedback queue schedul er
(Refer Figure 5.3) with three queues, namely, Q,, Q, and Q.. Further, assume
that the queues Q, and Q, employ round robin scheduling algorithmwithtime
quantum of 5msand 10 ms, respectively whilein queue Q,, the processes are
scheduledin FCFSorder. Thescheduler first executesall processesin Q. When
Q, isempty, the schedul er executesthe processesin Q,. Finally, when both Q,
and Q, areempty, the processesin Q, are executed. While executing processes
inQ,, if anew processarrivesin Q,, thecurrently executing processis preempted

and the new process starts executing. Similarly, aprocessarrivingin Q, preempts
aprocessexecutingin Q.. Initially, when aprocessentersinto ready queue; itis
placed in Q, whereit isallocated the CPU for 5 ms. If the processfinishesits
execution within 5 ms, it exitsfrom the queue. Otherwise, it ispreempted and
placed at theend of Q,. Here, itisalocated the CPU for 10 ms (if Q, isempty)
and still if it does not finish, it is preempted and placed at theend of Q,.

T

Q: _—;""olololo’J » CPU

L
Q Lowestprioriry_""l ° I ° I ° I ° |

Fig. 5.3 Multilevel Feedback Queue Scheduling

Highest priority
1 —4000‘.‘.‘.‘.

Example5.7: Consider four processes P, P,, P, and P, withtheir arrival times
and required CPU burst (in milliseconds) asshowninthefollowing table.

Process P, P, P P,
Arrival time 0 12 25 32
CPU burst (ms) 25 18 4 10

Assumethat there arethree ready queues Q,, Q, and Q,. The CPU time
sicefor Q and Q, is 5 msand 10 ms, respectively and in Q,, processes are
scheduled on FCFS basis. How will these processes be schedul ed according to
multilevel feedback queue scheduling a gorithm? Computethe averagewaiting
timeand averageturnaround time.

Solution: Theprocesseswill be schedul ed as depicted in thefollowing Gantt
chart.

Py P P, P Ps | Po| Py Py P, Py
Q Q Q Q Q | Q| Q Q. Q Q.
0 5 12 17 25 29 32 37 42 52 57

Initialy, P, entersthesystemat t =0, placedin Q, and allocated the CPU
for 5ms. Since, it does not execute completely, itismovedto Q, at t =5. Now Q,
isempty so the scheduler picksup the processfrom the head of Q,. Since, P, is
the only processin Q,, itisagain allocated the CPU for 10 ms. But during its
execution, P,entersQ, a t =12, therefore P, ispreempted and P, startsexecuting.
Att=17,P,ismovedto Q, and placed after P,. The CPU isallocated to thefirst
processinQ,, that is, P,. While P, isexecuting, P, entersQ, att =25s0 P, is
preempted, placed after P,in Q, and P, startsexecuting. As P, executes completely
withintimedlice, the scheduler picksup thefirst processinQ, whichisP, att=
29. WhileP, isexecuting, P, enters Q, at t = 32 because of which P, ispreempted
and placed after P, inQ,. TheCPU isassignedto P, formsandatt =37, P, is

Process Scheduling

NOTES

Self-Instructional
Material

111

Process Scheduling moved to Q, and placed after P,. At the sametime, the CPU isallocated to P,
(first processin Q,). Whenit completesat t = 42, the next processin Q, whichis
P,, startsexecuting. Whenit completes, thelast processinQ,, thet is, P, isexecuted.
NOTES Waitingtimefor P, = (5+12) =17 msasP, first waitsfor t = 12-17 and
thenagain waitsfor t = 25-37
Waitingtimefor P, = (12+10) =22 msasP, first waitsfor t=17-29 and
thenagain waitsfor t = 32-42
Waitingtimefor P,=0msasP, entersat t = 25, startsimmediately and
executescompletely
Waiting timefor P,= (52 -37) = 15 ms as P, waitsfor t = 37-52
Averagewaitingtime=(17+ 22+ 0+ 15)/4=13.5ms
Turnaroundtimefor P, = (42-0)=42msas P, entersatt=0and exitsat
t=42
Turnaroundtimefor P,=(52-12) =40 ms as P_entersat t = 12 and exits
at=52
Turnaroundtimefor P,= (29-25) =4 msas P_entersat t = 25 and exitsat
t=29
Turnaroundtimefor P, = (57 -32) =25 ms as P, entersat t = 32 and exits
at=57
Averageturnaround time= (42 + 40+ 4 + 25)/4=27.75ms
Advantages

- Itisfair to 1/O-bound (short) processes asthese processesare not required
towait for aninordinate amount of time. Hence, are executed quickly.

- It preventsstarvation by moving alower priority processto ahigher priority
queueif it hasbeen waiting for too long aperiod..

Disadvantages

- Itisthemost complex and cryptic scheduling agorithm.

- Moving the processes between queues causesanumber of context switches
whichresultsinan increased overhead.

- Theturnaroundtimefor long processesmay increasesignificantly.

5.5 MULTIPLE PROCESSOR SCHEDULING

Sofar, wehave discussed the scheduling of asingle processor among anumber of
processes in the queue. In case of having more than one processor, different
scheduling mechanismsneed to beincorporated. Inthissection, wewill concentrate
on homogeneous multiprocessor systemswhich mean the systemsinwhichall
processorsareidentica intermsof their functionality, and any processinthequeue

Self-Instructional Can be assigned to any available processor.
112 Material

The scheduling criteriafor multi processor scheduling are sameasthat for Process Scheduling
single processor scheduling. But there are al so some new considerationswhich
arenow discussed.

I mplementation of Ready Queue NOTES

In multiprocessor systems, the ready queue can beimplemented intwo ways.
Either there may be a separate ready queue for each processor (Refer Figure
5.4(a)) or theremay be asingle shared ready queuefor al the processors (Refer
Figure5.4(b)). Intheformer case, it may happen that at any moment the ready
queueof oneprocessor isempty whilethe other processor isvery busy in executing
processes. To prevent thissituation, thelatter approachispreferredinwhich all
the processes enter into one queue and scheduled on any avail able processor.

>9 a] a ®
[
-
&

s 8| o a ® » CPU,

see| o

(b) Single Shared Ready Queue

Fig. 5.4 Implementation of Ready Queue in Multiprocessor Systems
Scheduling Approaches

Thenext issueishow to schedul ethe processesfrom the ready queueto multiple
processors. For this, one of thefollowing scheduling approaches may be used.

- Symmetric Multiprocessing (SM P): Inthisapproach, each processor is
self-scheduling. For each processor, the scheduler selectsaprocessfor
execution from theready queue. Since, multiple processorsneed to access
common datastructure, thisapproach necessitates synchronization among
multiple processors. Thisisrequired so that no two processorscould select
the sameprocess and no processislost from theready queue.

Self-Instructional
Material 113

Process Scheduling

114

NOTES

Self-Instructional
Material

- Asymmetric M ultiprocessing: This approach is based on the master—
dlave structure among the processors. The responsibility of making
scheduling decisions, I/O processing and other system activitiesislimited
to only one processor (caled master), and other processors (called daves)
simply execute the user’s code. Whenever some processor becomes
available, the master processor examinesthe ready queue and selectsa
process for it. This approach is easier to implement than symmetric
multiprocessing as only one processor has access to the system data
dructures. But a thesametime, thisapproachisinefficient becauseanumber
of processes may block on the master processor.

L oad Balancing

On SMPsystemshaving aprivateready queuefor each processor, it might happen
at acertain moment of timethat one or more processors aresitting idlewhile
others are overloaded with anumber of processes waiting for them. Thus, in
order to achievethe better utilization of multiple processors, load balancingis
required which meansto keep the workl oad evenly distributed among multiple
processors. Therearetwo techniquesto perform load balancing, namely, push
migration and pull migration.

Inpush migration technique, theload isbaanced by periodicaly checking
theload of each processor and shifting the processes from the ready queues of
overloaded processorsto that of lessoverloaded or idle processors. On the other
hand, in pull migration technique, theidle processor itsdlf pullsawaiting process
from abusy processor.

Note: Load balancing is often unnecessary on SMP systems with a
single shared ready queue.

Processor Affinity

Processor affinity meansan effort to make aprocessto run on the same processor
it was executed last time. Whenever aprocess executes on aprocessor, the data
most recently accessed by it iskept in the cache memory of that processor. Next
timeif the processisrun on the same processor, then most if itsmemory accesses
aresatisfied in the cachememory only and asaresult the process execution speeds
up. However, if the processisrun on some different processor next time, the
cache of theolder processor becomesinvalid and the cache of the new processor
isto bere-populated. As aresult, the process execution is delayed. Thus, an
attempt should be made by the operating system to run aprocess on the same
processor each timeinstead of migrating it to some another processor.

When an operating system tries to make a process to run on the same
processor but does not guaranteeto waysdo so, it isreferred to assoft affinity.
On the other hand, when an operating system provides system callsthat forcea
process to run on the same processor, it isreferred to ashard affinity. In soft
affinity, thereisapossibility of process migration from one processor to another
whereasin hard affinity, the processisnever migrated to some another processor.

[o0]

. Define process scheduling.
. What happensif aprocess needsto perform somel/O operation duringits

. Define process spawning.
. What is the difference between symmetric and asymmetric direct

. What isthefunction of adispatcher?
. What is the difference between the non-preemptive and preemptive

. How areprioritiesassgned to processesin apriority scheduling dgorithm?
. How istheresponseratio of aprocess computed?

. What should betheided sizeof timequantum?

10.
1.

12.

Check Your Progress

execution?

communicaion?

schedulingdgorithms?

How doesmultilevel scheduling resultinlow scheduling overhead?

How doesmultilevel feedback queue scheduling provideanimprovement
over multilevel queuescheduling?

What isthemain difference between soft affinity and hard affinity?

5.6

ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

. Theprocedure of determining the next processto be executed on the CPU

iscalled process scheduling.

. If the process needsto perform somel/O operation duringitsexecution, it

isremoved from theready queueand put into the gppropriate device queue.
After the processcompletesits|/O operation and isready for theexecution,
itisswitched from the device queueto ready queue.

. Thetask of creating anew processon the request of someanother process

iscalled process spawning.

. Insymmetric direct communication, both sender and recel ver processneed

to know each other’s PID. On the other hand, in asymmetric direct
communication, only the sender process needsto know PID of thereceiver
process but the receiver process need not know the PID of the sender
process.

. Thedispatcher isamodul e of the operating system whosefunctionisto set

up the execution of the process sel ected by the short-term scheduler onthe
CPU.

. Innon-preemptive scheduling al gorithms, oncethe CPU isallocated to a

process, it cannot be taken back until the process voluntarily rel easesit or

Process Scheduling

NOTES

Self-Instructional
Material

115

Process Scheduling

116

NOTES

Self-Instructional
Material

10.

11.

12.

the process terminates. On the other hand, in preemptive scheduling
agorithms, the CPU can beforcibly taken back from the currently running
process beforeits completion and all ocated to some other process.

The priority can be assigned to aprocess either internally defined by the
system depending on the process’s characteristics like memory usage, I/0
frequency, usage cost, and so on, or externaly defined by the user executing
that process.

The Response Ratio (RR) of aprocessinthe queueiscomputed by using
thefollowing equation.

Time since arrival + CPU burst
CPU burst

Response Ratio (RR) =

Idedlly, the size of time quantum should be such that 80% of the processes
could compl etetheir execution within onetime quantum.

Themultilevel schedulingresultsinlow scheduling overhead asthe processes
are permanently assigned to their respective queues and do not move
between queues.

Inmultileve feedback scheduling agorithm, processesarenot permanently
assigned to queues, instead they are allowed to move between the queues.

Insoft affinity, thereisapossibility of processmigration from one processor
to another whereasin hard affinity, the processis never migrated to some
another processor.

5.7

SUMMARY

- Theagorithm used by the scheduler to carry out the sel ection of aprocess

for executionisknown as scheduling a gorithm.

- Thetime period elapsed in processing before performing the next 1/0

operationisknown as CPU burst.

- Thetimeinterva in performing 1/0 beforethe next CPU burstisknown as

I/Oburst.

- Digpatcher isthemodul e of the operating system that performsthefunction

of setting up the execution of the selected process on the CPU.

- For scheduling purposes, the schedul er may consider some performance

measures and optimization criteriawhich includefairness, CPU utilization,
ba anced utilization, throughput, waiting time, turnaround timeand response
time

- A broad range of agorithmsare used for the effective CPU scheduling.

Theseschedulingd gorithmsfal intotwo categories, namdy, non-preemptive
and preemptive.

- In non-preemptive scheduling algorithms, oncethe CPU isallocated to a
process, it cannot be taken back until the process voluntarily rel easesit or
the processterminates.

- In preemptive scheduling algorithms, the CPU can beforcibly taken back
from the currently running process beforeits compl etion and allocated to
some other process.

- FCFSisoneof thes mplest non-preemptive scheduling gorithmsinwhich
the processes are executed in the order of their arrival intheready queue.

- Theshortest jobfirst also known asshortest processnext or shortest request
next isanon-preemptive scheduling algorithm that schedul esthe processes
according to thelength of CPU burst they require.

- The shortest remaining time next also known as shortest timetogoisa
preemptiveversion of the SJF scheduling algorithm. It takesinto account
thelength of remaining CPU burst of the processesrather than thewhole
lengthin order to schedulethem.

- Inpriority-based scheduling a gorithm, each processisassigned apriority
and the higher priority processes are scheduled beforethe lower priority
Processes.

- Thehighest responseratio next scheduling isanon-preemptive scheduling
algorithm that schedul esthe processes according to their responseratio.
Whenever, CPU becomesavail able, the process having the highest value of
responseratio among al theready processesis scheduled next.

- Theround robin scheduling is one of the most widely used preemptive
scheduling algorithmsin which each processin theready queuegetsafixed
amount of CPU time (generaly from 10to 100 ms) known astimesdliceor
timequantum for itsexecution.

- Themultilevel queuescheduling isdesigned for theenvironmentswherethe
processes can be categorized into different groups on the basis of their
different responsetimerequirementsor different scheduling needs.

- Themultilevel feedback queue scheduling a so known asmulltileve adaptive
schedulingisanimproved version of multilevel queuescheduling dgorithm.
In this scheduling algorithm, processes are not permanently assigned to
gueues; instead they are allowed to move between the queues.

- Inmultiprocessor systems, the ready queue can beimplemented in two
ways. Either there may be a separate ready queue for each processor or
there may be asingle shared ready queuefor all the processors.

- Insymmetric multi processi ng scheduling gpproach, each processor issdlf-
scheduling. For each processor, the schedul er sel ectsaprocessfor execution
fromtheready queue.

- Inasymmetric multiprocessing scheduling approach, theresponsibility of
making scheduling decisions, 1/0O processing and other system activitiesis

Process Scheduling

NOTES

Self-Instructional
Material

117

Process Scheduling

118

NOTES

Self-Instructional
Material

up to only one processor (called master), and other processors (called
slaves) simply execute the user’s code.

- Inorder to achievethebetter utilization of multiple processors, |oad balancing

isrequired which meansto keep theworkload evenly distributed among
multiple processors. Therearetwo techniquesto perform load bal ancing,
namely, push migrationand pull migration.

- In push migration technique, theload isbalanced by periodicaly checking

theload of each processor and shifting the processesfrom the ready queues
of overloaded processorsto that of less overloaded or idle processors.

- In pull migration technique, theidle processor itsdf pullsawaiting process

from abusy processor.

- Processor affinity meansan effort to make aprocessto run on the same

processor it wasexecuted | ast time.

- When an operating system tries to make a process to run on the same

processor but does not guaranteeto awaysdo so, itisreferred to as soft
dfinity.

- When an operating system provides system calsthat forceaprocessto run

onthe sameprocessor, it isreferred to ashard affinity.

5.8

KEY WORDS

- Process scheduling: Procedure of determining the next process to be

executed onthe CPU.

- Swapping: Task of temporarily switching aprocessin and out of main

memory.

- Processspawning: Task of creating anew processon therequest of some

another process.

- Concurrent processes. Processesthat coexist inthe memory at thesame

time

- CPU bur<t: Timeperiod e apsed in processing before performing the next

I/O operation.

- 1/O burst: Time period elapsed in performing I/O before the next CPU

burst.

- Timediceor timequantum: Fixed amount of CPU time (generally from

10to 100 ms) each processin theready queue getsfor itsexecution.

5.9

SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Distinguish between non-preemptiveand preemptive scheduling agorithms.

2. Definethroughput, turnaround time, waiting timeand responsetime.

3. Ligthestuationsthat may requirethescheduler to makescheduling decisons.

4. Writeshort noteson thefollowing:
(& Loadbdancing

(b) Difference between multilevel queueand multilevel feedback queue
scheduling

(c) Softaffinityvs. hard affinity

(d) Dispatcher

(e) Scheduling approachesfor multiprocessor scheduling
Long-Answer Questions

Process Scheduling

NOTES

1. Comparethewaysof processcommunicationin message passng systems.
2. Consgder theindirect communication method where mailboxesare used.

(i) SupposeaprocessPwantstowait for two messages, onefrom mailbox
M and other frommailbox N.

(i) Suppose Pwantsto wait for one messagefrom mailbox M or from
mailbox N (or from both).

What will bethe sequence of executionof send() and recei ve()
cdlsinboth cases?

3. Explaintherelation (if any) between the following pairs of scheduling
dgorithms

(1) Round robin and FCFS

(i) Multilevel feedback queueand FCFS
(iii) SIFand SRTN

(iv) SRTN and priority-based

4. Which non-preemptive scheduling algorithms suffer from starvation and
under what conditions?

5. Consder fiveprocessesP,, P,, P,, P, and P, withtheir arrival times, required

2) 3!
CPU burst (inmilliseconds), and prioritiesasshowninthefollowing table.

Process P, P, Ps Py Ps
Arrival time 0 1 3 4 5
CPUburst(ms) | 10 | 6 | 3 2 5
Priority 4 3 1 2 3

Assumethat thelower the number, higher the priority. Computetheaverage
waiting timeand average turnaround timeof the processesfor each of the
following scheduling algorithms. Also determine which of thefollowing
scheduling dgorithmsresultinminimumwaitingtime.

Self-Instructional
Material 119

Process Scheduling

120

NOTES

Self-Instructional
Material

() FCFS

(i) SIF

(i) HRN

(iv) Non-preemptivepriority-based

6. Consider thesame set of processes as shown in Question 6. Computethe
averagewaiting timeand average turnaround time of processesfor each of
thefollowing scheduling agorithms.

SRTN

Preemptive priority-based

Roundrobin (if CPU timediceis2ms)

Comparethe performanceof these scheduling d gorithmswith each other.

7. Which of thefoll owing scheduling a gorithmsfavour 1/O-bound processes
and how?

Multilevel feedback queue
SIF
HRN

8. Consider ascheduling algorithm that prefersto schedul e those processes
first which have consumed theleast amount of CPU time. How will this
algorithm treat the I/0O-bound and CPU-bound processes? Isthere any
chanceof starvation?

5.10 FURTHER READINGS

Silberschatz, Abraham, Peter B. Galvin and Greg Gagne. 2008. Operating System
Concepts, 8th Edition. New Jersey: JohnWiley & Sons.

Tanenbaum, Andrew S. 2006. Operating Systems Design and Implementation,
3rd Edition. New Jersey: Prentice Hall.

Tanenbaum, Andrew S. 2001. Modern Operating Systems. New Jersey: Prentice
Hal.

Deitel, Harvey M. 1984. An Introduction to Operating Systems. Boston (US):
Addison-Wedey.

Stdlings, William. 1995. Operating Systems, 2nd Edition. New Jersey: Prentice
Hal.

Milenkovic, Milan. 1992. Operating Systems. Conceptsand Design. New York:
McGraw Hill Higher Education.

Mano, M. Morris. 1993. Computer System Architecture. New Jersey: Prentice
Hall Inc.

Process Synchronization

BLOCK - 111
SYNCHRONIZATION

UNIT 6 PROCESS NOTES
SYNCHRONIZATION

Sructure

6.0 Introduction

6.1 Objectives

6.2 Synchronization

6.3 Critica Section Problem

6.4 Synchronization Hardware

6.5 Semaphores

6.6 Classical Problemsof Synchronization

6.7 Monitors

6.8 Answersto Check Your Progress Questions
6.9 Summary

6.10 Key Words

6.11 Self-Assessment Questions and Exercises
6.12 Further Readings

6.0 INTRODUCTION

Operating systemsthat facilitate multiprogramming all ow multiple processesto
execute concurrently in asystem even with asingle processor. These processes
may shareinformation with each other through shared memory locationsor shared
files. A processthat sharesinformationwith other processesiscalled acooperating
process. If cooperating processes are not executed in asystematic manner, there
arepossihilitiesof dataincons stency. Keeping these possibilitiesin mind, severa
mechanisms have been formul ated to ascertain datacons stency at various phases
of execution with concurrent execution of cooperating processes.

Inthisunit, you will study the conceptsof process synchronization, critical
section problem, synchroni zation hardware, semaphores, classical problemsof
synchronization and monitors.

6.1 OBJECTIVES

After going throughthisunit, youwill beableto:
- Analysethe need for synchroni zation among processes
- Describethecritical section problem

Self-Instructional
Material 121

Process Synchronization

122

NOTES

Self-Instructional
Material

- Explain the Peterson solution for acritica section problem

- Explainthebakery dgorithm

- Discussthe hardware-supported sol utionsfor thecritical section problem
- Understand the concept and functions of semaphores

- Discussvariousclassica synchronization problemsand their solutions

- Understand therole and function of monitors

6.2 SYNCHRONIZATION

Afore mentioned, the major drawback of unordered execution of cooperating
processesisdataincons stency. Thus, to comprehend the concept, | et usconsider
two cooperating processes P, and P, that update the balance of anaccountina
bank. The code segment for the processesisgivenin Table 6.1.

Table 6.1 Code Segment for Processes P, and P,

Process P, Process P,
Read Bal ance Read Bal ance
Bal ance = Bal ance + 1000 | Bal ance = Bal ance — 400

Supposethat the balanceisinitially 5000, then after the execution of both
P, and P, it should be 5600. The correct result isachieved if P, and P, execute
oneby oneinany order either P, followed by P, or P, followed by P,. However,
if theingtructionsof P, and P, areinterleaved arbitrarily, the balance may not be
5600 after theexecution of both P, and P,,. One possibleinterleaving sequence
for theexecution of ingtructionsof P, and P, isgiveninTable6.2.

Table 6.2 Possible Interleaved Sequence

Process P, Process P, Balance
Read Bal ance 5000
Read Bal ance 5000
Bal ance = Bal ance + 1000 6000
Bal ance = Bal ance — 400 4600

Theaboveinterleaved sequenceresultsin aninconsistent balance, that is,
4600. If the order of last twoinstructionsisinterchanged, the balance would be
6000 (again, inconsistent). Notethat asituation where several processes sharing
some dataexecute concurrently and theresult of execution dependson the order
inwhich the shared datais accessed by the processesis called race condition.

To avoid race conditions or such inconsistent situations, some form of
synchronization among the processesis required which ensuresthat only one
processismani pul ating the shared dataat atime. One commonway to synchronize
the processesissignaling, in which the process generates signalsto allow other
processesto manipulatethe shared data.

6.3 CRITICAL SECTION PROBLEM

Critical section istheportion of code of aprocessinwhich it accessesor changes
the shared data. It isimportant for the system to ensure that the execution of
critical sectionsby the cooperating processesis mutually exclusive. It meansthat
no two processesare allowed to executeintheir critical sectionsat onetime. The
critical section problem isto design aprotocol that the processes can useto
cooperate. Each process must request permissionto enter itscritical section and
signd theentrance by setting the values of somevariables. The process doesthis
inthe codejust beforethecritical section. That part of codeiscalledtheentry
section. After executing the critical section, the processagain setssomevariables
tosigna theexit fromthecritica section. Theportion of codeinwhich the process
doesthisiscalled theexit section. A solution to critical section problem must
s sfy themutud exdusion reguirement inadditionto thefollowing two regquirements.

- Progress: Supposeaprocess P, isexecutinginitscritica section, thenall
other processesthat wish to enter their critica sectionshavetowait. When
P, finishesitsexecutionin critica section, adecision hasto besettled asto
which processwill enter its subsequent critical section. Inthedecision, itis
thebasi ¢ principlethat only thewaiting processeswill participate, and the
decision should bemadeinadtipulated period of time. Principally, aprocess
that hasto exit fromitscritical section cannot hold back other processes
fromenteringtheir critical sections.

- Bounded Waiting: A processwishing to enter itscritical section cannot be
detained for an unspecified period of time. Thereisawaysan upper limiton
the number of timesthat other processesare dlowed to enter their critical
sections after aprocess has made arequest to enter itscritical section and
beforethe permissionisacknowledged.

Countlessworkingshavebeenreinforced over aperiod of timeto overcome
the problem of critical section. Fundamentally, these workingsinclude
software solutions, hardware-supported solutions, operating system
primitives, and programming language constructs. In thissection, we present
two-processand multiple-process software sol utions. Hardware-supported
solutions, operating system primitives (semaphores) and programming
language constructs (Monitors).

Peterson’s Algorithm: Two-Process Solution

Peterson advocated an algorithm to solvethe critical section problem for two
processes. Thealgorithm letsthetwo processesPi and Pj to sharethefollowing
twovarigbles:

int turn;

boolean flagl[2];

Process Synchronization

NOTES

Self-Instructional
Material

123

Process Synchronization

124

NOTES

Self-Instructional
Material

Thevaueof variableturnisinitializedtoetheri orj andboththedements
of array flag areinitialized to fa se. Thegenera structurefor the code segment of
process, say Pi , isasfollows:

do

{

flag[i] = true;

el <+—— Entry secti
while(flag[j] && turn==j) ntry section

doNot hi ng() ;

/lcritical section

flag[i] = false; |e—— Exitsection

/'l remai ni ng code
Iwhile(l);

When any process, suppose Pi , wishesto enter itscritical section, it first
setsf |l ag[i] tot r ue andthevalueof t ur n to other number, thatis, j . It, then,
verifiesthefollowing two conditions:

1. Whetherfl ag[j] istrue
2.Whether t ur n equalsj

If any of these conditionsisfalse, the processPi entersitscritical section,
otherwise, it waits. In case, only Pi wishesto enter the critical section, the first
conditionremainsfalse. TheprocessPi then executesinitscritical section, and
after that resetsthef | ag[i] tof al se, indicatingthat Pi isnotinitscritical
Section.

Now, consider the case when both Pi and Pj wish to enter their critical
sectionsat the sametime. Inthiscase, both the elementsof thef | ag will beset to
t rue andthevaueof t ur nwill besettoi andj onebyone(by Pi andPj) but
only oneretains. Now, thefirst conditionist r ue, thus, thevaueof t ur n decides
which process entersits critical section first. The other process has to wait. It
impliesmutual exclusionispreserved.

To verify that thea gorithm al so satisfiesthe other two requirements, observe
that aprocessPi can be prevented from enteringitscritical sectioniff | ag[j] is
trueandturnisj.If Pj doesnotwish to enter itscritical section, then Pi
foundf | ag[j] asf al se and canenteritscritical section. However, when both
processeswish to enter their critical section at the sametimethevariablet ur n
playsitsroleand alowed one processto enter itscritical section. Supposet ur nis
j ,thenPj isallowedfirstand Pi isstuck intheloop. Now, whenPj exitsfromits
critical section, itsetsf | ag[j] tof al se toindicatethatitisnotinitscritical
section now. Thisallows Pi to enter itscritical section. It means Pi entersits
critical section after at most oneentry by Pj , satisfying both progressand bounded-
waliting requirements.

Bakery Algorithm: Multiple-Process Solution

Lamport conceived theidea of bakery algorithm, targeted specifically to resolve
the critical section problem for N processes. The algorithm lets the processes to
sharethefollowing two variables:
boolean choosing[N];
int number[N];
All theelementsof thearrays, that is,choosi ng andnunber areinitialized
tof al se and O, respectively.

Thealgorithm assignsanumber to each processand servesthe processwith
the lowest number first. The algorithm cannot ensure that two processes do not
receive the same number. Thus, if two processes, say Pi and Pj , receivethe same
number, then Pi isservedfirstifi <j . Thegeneral structure for the code segment
of process, say Pi , isasfollows:

do

{
choosing[i] = true;
number[i] = MAX(nunber) + 1,
choosing[i] = fal se;

for(j=0;j<Nj++)

whi | e(choosing[j])

doNot hi ng() ; @—— Entry section
whi | e(nunber[j]!=0 &% nunber[j]<nunber[i] ||
nunber[j]==nunber[i] && j<i)

doNot hi ng();

}

/lcritical section

nunber[i] = O; l&——— EXxit section

/I remai ni ng code
Iwhile(1);

Note: For simplicity, the notation MAX(nunber) isused to retrieve the maximum
element in the array nunber .

To verify that mutua exclusionispreserved, suppose aprocessP0 isexecuting
initscritical section and another process, say P1, attempts to enter the critical
section. For j =0, theprocessP1 isnot blocked inthefirstwhi | e loop because PO
had set choosi ng[0] tof al se intheentry section. Nonetheless, in the latter
casewhi | e loopforj =0, P1 findsthefollowing:

nunber [j]! =0, since PO isexecutinginthe critica section after setting
it to anonzero number in the entry section

nunber [] <nunber[i], since Pl isassigned a number after PO.

Though, P1 may be assigned the same number asthat of PO but in that
case, P1 findsj <i because0<1.

Process Synchronization

NOTES

Self-Instructional
Material

125

Process Synchronization Since, theeventua result inthe second whileloopistrue, P1 isblockedin
thewhileloop until PO finishesexecutioninitscritica section, thus, preservingthe
mutua exdus on requirement. Thea gorithm not only preservesthemutud exdusion
requirement, but also the progress and bounded-waiting requirements. To verify

NOTES theserequirements, observethat if two or more processes arewaiting to enter the
critical sections, thentheprocessthat had comefirstisalowed to enter thecritical
sectionfirst. Theconditionsin the second while statement ensurethis. Tobemore
precise,it meansthat the processes are served on the First-Come, First-Serve or

FCFSbasis, and no processis del ayed because of starvation.

6.4 SYNCHRONIZATION HARDWARE

Hardware-supported solutions devel oped for the critical section problem make
maximum useof hardwareingructionsavailableon many systems thus, areeffective
andefficient.

A system with asingle-processor, executes only one process at agiven
moment. The other processes can gain control of processor through interrupts.
Therefore, to decipher any problemin thecritical section, it must be ascertained
that interrupt should not occur whileaprocessisexecutinginitscritical section. A
process can achievethisby disablinginterruptsbeforeenteringinitscritica section.
Notethat the processmust engbletheinterruptsimmediatdly after finishing execution
initscritical section.

Although thismethod appearsto bequite s mpleand straightforward, but it
has certain disadvantages. Firt, itisonly feas blein asingle-processor environment
only because disabling interruptsin amultiprocessor environment takesalong
timeasmessageistransmitted to al the processors. Thismessage passing delays
processesfrom entering into their critical sections, thus, affecting theinput output
ratio of thesystem. Second, it may impact the scheduling goals, sincethe processor
cannot be preempted from aprocessexecuting initscritica section.

Duetotheaforesad disadvantages, many syslemsprovide specid hardware
instructionsto solvethe critical section problem. Onespecial instructionisthe
Test AndSet instructionwhich can be defined asfollows:

boolean TestAndSet (boolean &lock)
{
if (lock)
return lock;
else
{
lock = true;

return false;

Self-Instructional
126 Material

A sdienttrait of theTest AndSet indructionisthat it executesasan atomic Process Synchronization
action. Thisclearly impliesthat if two Test AndSet instructions are executed
contemporaneoudy (each on anindividual CPU) in amultiprocessor system, then
one must compl ete the execution procedure before another one starts on another
processor. NOTES

Onsystemsthat support the Test AndSet instruction, themutual exclusion
can be implemented by allowing the processes to share a Bool ean variable, say
| ock,initidlizedtof al se. Thegenera structurefor the code segment of process,
say Pi ,isasfollows:

do
{

whi | e(Test AndSet (| ock)
(doNot hi ng()(;) <+—— Entry section

[lcritical section

| ock = false; — Exit section

/ / remai ni ng code

Iwhile(1);

Thealgorithmiseasy and ssmpleto understand. Any processthat wishesto
enter its critical section executesthe Test AndSet instruction and passes the
value of | ock asaparameter to it. If thevalue of | ock isf al se (meansno
processisinitscritical section), the Test AndSet instruction setsthel ock to
t r ue andreturnsf al se, which breaksthewhi | e loop and allowstheprocessto
enter itscritical section. However, if thevalueof | ock ist r ue,theTest AndSet
ingructionreturnst r ue, thus, blockingthe processintheloop. Theagorithm satisfies
the mutual exclusion requirement, but does not satisfy the bounded-waiting
requirement.

Another special hardwareinstructionisthe Swap instruction that operates
ontwo Booleanvariables. LiketheTest AndSet ingtruction, the Swap instruction
also executes asan atomic action. Thisinstruction can be defined asfollows:

void Swap (boolean &a, boolean &b)

{

boolean temp = a;
a = b;

b = temp;

}

On systemsthat support the Swap instruction, the mutual exclusion canbe
implemented by allowing the processes to share aBoolean variable, say | ock,
initializedtof al se. Inadditiontothis, each processusesalocal Boolean variable,
say key. The general structure for the code segment of process, say Pi , isas

follows Self-Instructional
Material 127

Process Synchronization

128

NOTES

Self-Instructional
Material

key = true; _
while (key==true) <«— Entry section
Swap(| ock, key);

[lcritical section

| ock = fal se; <«—— Exit section

/I remai ni ng code

Jwhile(l);

Theagorithmisquite smpleand uncomplicated for usersto interpret and get
thedesired task executed. Initially, thevaueof | ock isf al se, sothefirst process,
say Pi , when executesthe Swap instruction setsthekey tof al se and| ock to
t rue.Thef al se valuefor key allowsthe processto enter itscritical section.
Any other process, say Pj , that attemptsto enter itscritical section findsthat the
| ock ist r ue and whenitisswapped withkey, thekey remainst r ue. The
t r ue valuefor key blocksthe process Pj inthewhi | e loop until thel ock
becomesf al se. Notethat thel ock becomesf al se whenPi exitsfromthe
critical section. Thisagorithm a sofulfilstheexpectationsof only themutua excluson
requirement and the bounded-waiting requirementsare not fulfiled.

Tomeet dl thereguirementsof the solutionfor critical section problem, another
algorithmisdeveloped that usesthe Test AndSet instruction. Thealgorithmlets
the processesto sharethefollowing two variables:

boolean lock;

boolean waiting[N];
Thevariablel ock andall theelementsof arraywai t i ng areinitializedtof al se.
Each processalso hasaloca Boolean variable, say key. Thegeneral structurefor
the code segment of process, say Pi , isasfollows:

do
{

waiting[i] = true;
key = true;
while(waiting[i] && key) " &— Entry section
key = Test AndSet (| ock);
waiting[i] = false;

/lcritical section

j =(i +1) %N
while(j!=i && waiting[next_ts]==false)
=0 +1) mdN
if (j==i) le—— Exit section

lock = fal se;
el se

waiting[j] = fal se;

//remai ni ng code

Jwhile(1);

To verify that themutual exclusion requirement ismet, supposeaprocessPi Process Synchronization
attemptsto enter its critical section. It first setsthewai ti ng[i] andkey to
t r ue, and then reaches the whi | e loop in the entry section. If Pi isthe first
process attempting to enter itscritical section, it findsthat both the conditionsin the
whi | elooparet r ue. Thenit executestheTest AndSet instruction which sets NOTES
thel ock tot r ue andreturnsf al se,sincel ock isinitidlyf al se. Thereturned
value, thatisf al se,isassignedtokey, which allowstheprocessPi toexit from
theloop and enter itscritical section after resettingthewai ti ng[i] tof al se.

Now, the value of | ock ist r ue, thus, any other process, say Pj , that
attemptsto enter itscritical section when executesthe Test AndSet instruction
sets the key to t r ue and is blocked in the whi | e loop until either key or
wai ting[j] becomesf al se. Notethat neither key norwai ti ng[j] becomes
fal se until Pi isinitscritical section. This maintains the mutual exclusion
requirement.

To verify the progress requirement, observein theexit sectionthat Pi sets
eitherl ock orwai ti ng[j] tof al se. Settingl ock (onwhich thevalue of
key depends) orwai ti ng[j] tof al se allowsany other waiting processto
enter itscritical section.

Thealgorithm al so sati sfiesthe bounded-waiting requirement. To verify this,
observethat when any process, say Pi , exitsfromitscritical section, it scansthe
wai ti ng arrayinthecyclicorder (i +1,i +2,...,N1,0,1,...,i - 1)tolocate
thefirst process, say Pj ,withwai ti ng[j] equal tot r ue. If nosuch processis
found, Pi setsl ock tof al se, sothat any other process that now attemptsto
enter itscritical section need not towait. On the contrary, if such aprocessisfound,
it entersitscritical section next, since Pi setswai ti ng[j] tof al se.Inthis
way, each processgetsitsturn to enter itscritical section after amaximumof N- 1
Pprocesses.

Check Your Progress

1. Definetheterm race condition.

2. What arethe major requirementsthat must be followed by asolution to
overcomeacritica section problem?

3. What isthegenera structurefor the code segment of aprocessunder the
bakery dgorithm?

4. A critical section problem can be solved with disablinginterrupts. What
are the disadvantages of this method as a solution to acritical section
problem?

5. Stateatest and set instruction.

Self-Instructional
Material 129

Process Synchronization

130

NOTES

Self-Instructional
Material

6.5 SEMAPHORES

In 1965, Dijkstra suggested the use of an abstract data type called asemaphore
intended for controlling synchronization. The primary intention of employing a
semaphore S (aninteger variable) isto provide agenera -purpose solution to critical
section problem. Inthisproposal, two standard atomic operationsaredefinedon S,
namely, wai t andsi gnal , and after initialization, S isaccessed only through
thesetwo operations. Thedefinitionof wai t andsi gnal operationin pseudocode
isasfollows:

wait (S)
{
while (S<=0)
doNothing () ;
S—;

signal (S)

S++;

}

The solution of critical section problem for Nprocessesisimplemented by alowing
the processesto shareasemaphore S, whichisinitializedto 1. Thegeneral structure
for the code segment of process, say Pi , isasfollows:

do
{

wait(S); [«——Entry section

/lcritical section

signal (S); |e—— Exitsection

//remai ni ng code

}whi l e(1);

Here, itisimportant to notethat al the sol utions presented until now for the
critica section problem, ind uding thesol ution using semaphore, requirebusy waiting.
Thisentallsthat if aprocessisexecutinginitscritica section, dl theother processes
that attempt to enter their respectivecritica sectionsmust loop continuoudy inthe

entry section. Executing aloop continuoudy wastesCPU cycles, andisconsidered ~ Process Synchronization
to beacrucia lacunain multiprogramming systemswith one processor.

To magter the problem of busy waiitng, the definition of semaphoreismodified
to hold aninteger valueand alist of processes, andthewai t andsi gnal operations NOTES
arealsomodified. Inthemodifiedwai t operation, when aprocessfindsthat the
value of the semaphoreisnegative, it blocksitself inlieu of busy waiting. Blocking
aprocess meansit isinserted in the queue associ ated with the semaphore and the
state of the process is switched to the waiting state. The si gnal operationis
modified to removeaprocess, if any, from the queue associated with the semaphore
andrestart it. The modified definition of semaphore, thewai t operation, and the
si gnal operationisasfollows:

struct semaphore
{
int value;
struct process *queue;

};

void wait (semaphore S)
{
S.value—;
if (S.value<0)
{
insert this process to queue associated with S

block(); //suspend this process

void signal (semaphore S)
{

S.value++;

if (S.value<=0)

{

remove a process P from the queue associated with

wakeup (P) ; //resume the execution of blocked process

}

Note: Theblock () operation and wakeup () operation are provided by the operating
system as basic system calls.

Self-Instructional
Material 131

Process Synchronization

132

NOTES

Self-Instructional
Material

Animportant requirement isthat boththewai t andsi gnal operations
must betreated asatomic instructions. It meansthat no two processes can execute
wai t andsi gnal operationson the same semaphore simultaneously. We can
view thisasacritical section problem, wherethecritical section consistsof wai t
andsi gnal operations. Thisproblemisnot abigissueand can beworked out by
making use of either of the aforementioned solutions.

Inthisway, though, we have not completely eliminated the busy waiting but
limited the busy waiting to only thecritical sectionsconsstingofwai t andsi gnal
operations. Sincethese two operationsare very short, busy waiting seldom takes
place and evenif it takes place, thedurationisvery short.

The semaphore presented aboveisknown ascounting semaphor eor general
semaphor e, sinceitsinteger val ue can range over an unrestricted domain. Another
type of semaphore is binary semaphor e whose integer value can range only
between 0 and 1. Binary semaphoreismore straightforward to put into effect than
genera semaphore. Thewai t andsi gnal operationsfor abinary semaphoreS,
initializedto 1, areasfollows:

void wait (semaphore S)
{
if (S.value==1)
S.value = 0;
else
insert this process to gqueue associated with S

block(); //suspend this process

void signal (semaphore S)
{
if (emptyqueue()) //check if queue is empty
S.value = 1;
else
remove a process P from the queue associated with S

wakeup (P) ; //resume the execution of blocked process
P

}

6.6 CLASSICAL PROBLEMS OF
SYNCHRONIZATION

So far, theimportance and correct utilization of semaphoreto find asuccessful
resolution for critical section problem was elucidated. Because of itsversatile
nature, semaphore a so authenti cates synchronization and hence, isalso used to

work out varying problemspertaining to synchronization. Inthissection, wepresent ~ ProcessSynchronization
some classical problems of synchronization and using semaphores for
synchroni zation purposesasasol utions of these problems. Notethat these problems

of synchronization areused for testingamost al thenewly proposed synchronization
scheme, NOTES

Bounded-Buffer Problem

Thebounded-buffer problem isconsidered afeasible solution to the problem that
wasapprised by using shared memory. It allowsat mostsi ze- 1itemstobeinthe
buffer at the sametime. One possible solution to eliminate thisinadequacy isto have
aninteger variablecount , initialized to 0, to keep track of the number of itemsin
the buffer. The producer processincrementsthecount every timeit addsanew
itemto the buffer, and the consumer processdecrementsthecount every timeit
removes anitem from the buffer. The modified code of the producer and consumer
processesisasfollows:

/ /producer process
while (1)
{

item_produced = produce_item() ;

while (count == size)
doNothing () ;

buffer([in] = item_produced;

in = (in + 1) % size;

count++;

//consumer process

while (1)
{
while(count == 0)
doNothing () ;
item_consumed = buffer[out];
out = (out + 1) % size;
count—;

consume_item(item consumed) ;

The producer processfirst determineswhether thevalue of count isequa
tosizeor not. If itisequd, the producer waits, sincethe buffer isfull. Otherwise, it
addsanitemtothe buffer and incrementsthecount . Correspondingly, the consumer
process first determines whether the value of count is0 or not. If it is so, the
consumer waits, sincethe buffer isempty. Otherwise, it removesanitem fromthe
buffer and decrementsthecount .

Self-Instructional
Material 133

Process Synchronization

134

NOTES

Self-Instructional
Material

Though, both producer and consumer processes are correct when empl oyed
individually, but concurrent execution of these processes may result into therace
condition. To understand this, suppose the statement count ++ is internally
implemented asfollows:

registerl = count
registerl = registerl + 1

count = registerl

Here r egi st er 1isaloca CPU regiger. Inthisimplementation, thevalue
of count isfirstreadintoalocal CPU register. Then, thevalueintheregisteris
incremented by one, whichisfinaly assgned back tothevariablecount . Similarly,
supposethestatement count - - isinternally implemented asfollows:

register2 = count
register2 = register2 - 1
count = register2

Further, supposethevaueof count iscurrently 2, and the producer process
readsthisvalueinr egi st er 1 andthenincrementsthevalueinr egi st er 1.
Thevalueinr egi st er 1 becomes 3. However, before the producer process
assignsback theincremented valueto count , the scheduler decidesto temporarily
suspend it and start running the consumer process. The consumer process reads
thevalueof count (whichisgtill 2)inr egi st er 2 andthen decrementsit. The
valueinr egi st er 2 becomes1.

Now, theorder inwhich count isupdated by the producer and consumer
processes decidesthefinal valueof count . It means, if producer first and consumer
secondly updatescount , itsvalue becomes 1. Ontheother hand, if consumer first
and producer secondly updatescount , itsvalue becomes 3. However, theonly
correct value of count is 2, which is now cannot be produced. The incorrect
result isgenerated because accessto thevariablecount isunconstrained and both
the processes manipulateit concurrently.

To keep the practicability of occurrence of race condition at bay, we present
asolution to the bounded-buffer problem using semaphores. The biggest advantage
of this solution using semaphoresisthat it not only avoidsthe occurrence of race
condition but also alowsto havesi ze itemsinthe buffer at the sametime, thus,
eliminating the shortcomings of the solutionsusi ng shared memory. Thefollowing
three semaphoresare used in thissol ution.

- Themut ex semaphore, initializedto 1, isused to providethe producer and
consumer processes the mutually exclusive access to the buffer. This
semaphore ensuresthat only one process, either producer or consumer, is
accessing the buffer and the associated variablesat atime.

Thef ul | semaphore, initialized to 0, isused to count the number of full
buffers. Thissemaphore ensuresthat the producer stops executing items
when the buffer isfull.

Theenpt y semaphore, initialized to thevalueof si ze, isused to count Process Synchronization
the number of empty buffers. Thissemaphore ensuresthat consumer stops
executing when the buffer isempty.
Thegenera structurefor the code segment of producer process and consumer
processisasfollows: NOTES

//structure of a producer process
do
{
item_produced = produce_item() ;
wailt (empty) ;
wait (mutex) ;
buffer[in] = item_produced;
in = (in + 1) % size;
signal (mutex) ;
signal (full);
twhile (1) ;

//structure of consumer process
do
{
wait (full);
wait (mutex) ;
item_consumed = buffer[out];
out = (out + 1) % size;
signal (mutex) ;
signal (empty) ;
consume_item(item consumed) ;
twhile(1);

The Readers-Writers Problem

Concurrently executing processesthat are sharing adataobject, such asafileor
avariable, fal into two groups: readersand writers. Theprocessesinthereaders
group want only to read the contents of the shared object, whereas, the processes
inwritersgroup want to update (read and write) the value of shared object.
Thereisno problemif multiplereaders accessthe shared object smultaneoudly.
However, if awriter and some other process (either areader or awriter) access
the shared object s multaneoudy, datamay becomeinconsi stent.

To ensurethat such aproblem doesnot arise, we must guarantee that when
awriter isaccessing the shared object, no reader or writer accessesthat shared
object. This synchronization problemistermed as readers—writers problem,

Self-Instructional
Material 135

Process Synchronization

136

NOTES

Self-Instructional
Material

and it has many variations. The first readers—writers problem (the simplest one)
requiresthefollowing.

- All readersand writersshould wait if awriter isaccessing the shared object.

It meanswriters should get mutually exclusive accessto the shared object.

- Readers should not wait unlessawriter isaccessing the shared object. It

meansif areader iscurrently reading the shared object and awriter and a
reader request, then writer should wait, but reader should not wait just
becauseawriter iswaiting.

To develop the viable solution to the first readers—writers problem, the
readersaredlowed to sharetwo semaphoresread and write, bothinitialized
to 1, and aninteger variable count, initialized to 0. Thewriterssharethe
semaphore write with the readers. The functions of read and write
semaphoresand count variableareasfollows:

- Thecount variableisused to count the number of readerscurrently reading

the shared object. Thecount isupdated each time areader entersor exits
thecritical section.

- Ther ead semaphoreisused to provide mutual -exclusion to readerswhen

count isbeingupdated.

- Thewr i t e semaphoreisused to provide mutual-exclusiontowriters. Itis

accessed by all thewritersand only thefirst or |ast reader that entersor exits
itscritical section.

Thegenerd structurefor the code segment of areader processand awriter

processisasfollows:

//structure of a reader process
wait (read); //mutual-exclusion for readers before updating
//count
count++;
if (count==1) //if it is the first reader
wait (write) ;

signal (read) ;

reading contents of shared object

wait (read) ;

count—;

if (count==0) //if it is the only reader
signal (write) ;

signal (read) ;

//structure of a writer process

wait (write); //mutual-exclusion for writers Process Synchronization

updating the shared object

NOTES

signal (write) ;
The Dining Philosophers Problem
To understand thedining philosophers problem, consider five philosopherssitting

around acircular table. Thereisabow! of riceinthe centre of thetableand five
chopsticks—one in between each pair of philosophers (Refer Figure 6.1).

Fig. 6.1 Stuation in Dining Philosophers

Initialy, all the philosophersareinthethinking phaseand whilethinking,
they make sure that they do not interact with each other. As time passes by,
philosophersmight feel hungry. When aphilosopher feel shungry, heattemptsto
pick up thetwo chopsticks kept in close proximity to him (that arein between him
and hisleft and hisright philosophers). If the philosopherson hisleft andright are
not eating, hesuccessfully getsthetwo chopsticks. With thetwo chopsticksinhis
hand, he startseating. After hefinishes egting, the chopsticksare positioned back
on the table and the philosopher beginsto think again. On the contrary, if the
philosopher on hisleft or right isa ready eating, then fallsto grab thetwo chopsticks
at the sametime, and thus, has to wait. Here it is necessary to note that this
situation isidentical to the onethat occursin the system to allocate resources
among several processes. Each process should get required resourcestofinishits
task without being deadl ocked and starved.

A solution to thisproblem isto represent each chopstick asasemaphore, and
philosophers must grab or release chopsticks by executing wai t operation or
si gnal operation, respectively, on the appropriate semaphores. We usean array
chopst i ck of sze5whereeacheementisinitializedto1. Thegenera structure
for the code segment of philosopheri isasfollows:

Self-Instructional
Material 137

Process Synchronization

138

NOTES

Self-Instructional
Material

do
thinking

wait (chopstick[i]);
wait (chopstick[(1i+1)%5];

eating

signal (chopstick[i]) ;
signal (chopstick[(i+1) %5171 ;

thinking

}while (1) ;

Thissolutionissimple and ensuresthat no two neighborsareeating at the
same time. However, the solution is not free from deadlock. Suppose all the
philosophersattempt to grab the chopsticks s multaneoudy and grab one chopstick
successfully. Inthiscase, dl theeementsof chopstick will be 0. Thus, when each
philosopher attemptsto grab the second chopstick, hewill goinwaiting state
forever.

A simple solution to avoid thisdeadlock isto ensurethat a phil osopher
either picks up both chopsticks or no chopstick at all. It means he must pick
chopsticksin acritical section. A deadlock free solution to dining-philosophers
problemispresented in the next section with the use of monitors.

6.7 MONITORS

A monitor isaprogramming language construct which isalso used to provide
mutualy exclusive accessto critical sections. The programmer definesmonitor
type which consists of declaration of shared data (or variables), proceduresor
functionsthat accessthese variablesand initiaization code. Thegeneral syntax of
declaring amonitor typeisasfollows:

monitor <monitor-name>

{
//shared data (or variable) declarations

data type <variable-name>;
//function (or procedure) declarations

return_type <function-name> (parameters)

{
//body of function

}

monitor-name ()

{

//initialization code

Thevariablesdefined ingdeamonitor can only be accessed by thefunctions
defined within the monitor, and it isnot feasiblefor any processto accessthese
variables.. Thus, if any process hasto accessthesevariables, itisonly possible
through theexecution of thefunctionsdefined inddethemonitor. Further, themonitor
construct checksthat only one process may be executing withinthemonitor at a
given moment. But if aprocessisexecuting within the monitor, then other requesting
processes are bl ocked and placed on an entry queue.

Though, monitor construct ensures mutual exclusion for processes, but
sometimes programmer may find them insufficient to represent some synchronization
schemes. For such situations, programmer needsto define hisown synchronization
mechanisms. He can define his own mechanisms by defining variables of
condi t i ontypeonwhich only two operationscan beinvoked: wai t andsi gnal .
Suppose, programmer definesavariable Cof condi t i on type, then execution of
theoperationC. wai t () by aprocess, say Pi , suspendsthe execution of Pi , and
placesit on a queue associated with the condi t i on variable C. On the other
hand, the execution of theoperation C. si gnhal () by aprocess, say Pi , resumes
the execution of exactly one suspended processPj , if any. It meansthat theexecution
of thesi gnal operationby Pi alows other suspended process Pj to execute
within the monitor. However, only one processis allowed to execute within the
monitor at onetime. Thus, monitor construct preventsPj fromresuminguntil Pi is
executing inthemonitor. Therearefollowing possibilitiesto handlethissituation.

Process Synchronization

NOTES

Self-Instructional
Material

139

Process Synchronization - TheprocessPi must be suspendedto allow Pj toresumeand wait until
Pj leavesthemonitor.

TheprocessPj must remain suspended until Pi leavesthe monitor.
- TheprocessPi must executethesi gnal operation asitslast statement
NOTES inthemonitor sothat Pj canresumeimmediately.
Now, wearein asituation to use the monitor to devel op adeadl ock-free
solution to dining philosophers problem. Thefollowing monitor controlsthe
distribution of chopsticksto philosophers.

monitor diningPhilosophers
{
enum {thinking, hungry, eating} statel[5];
condition self[5];
void getChopsticks (int i)
{
int left, right;
state[i] = hungry;
left = (i+4)%5;
right = (i+1)%5;
if ((state[left]==eating) || (state[right]==eating))
selfli].wait();
else
state[i] = eating;
}
void putDownChopsticks (int 1)
{
int left, right;
state[i] = thinking;
left = (i+4)%5;
right = (i+1)%5;
verifyAndAllow(left) ;
verifyAndAllow (right) ;
}
void verifyAndAllow (int i)
{
int left, right;
left = (i+4)%5;
right = (i+1)%5;
if (state[i]==hungry)
{
if ((state[left] !=eating) && (statel[right]!=eating))
{

Self-Instructional
140 Material

state[i] = eating; Process Synchronization
self[i] .signal();
}

: . NOTES

void initial ()

{

int i;

for (i=0; i<5; i++)
state[i] = thinking;

}

}

Each philosopher that feelshungry must invoketheget chopst i cks()
operation before start eating and after eating is finished, he must invoke
put Downchopst i cks() operationsandthen may start thinking. Thus, thegenera
structurefor the code segment philosopheri isasfollows:

di ni ngPhi | osophers. get Chopsti cks(i);
eating
di ni ngPhi | osophers. put DownChopsti cks(i);

Theget Chopst i cks() operation changesthestate of philosopher process
from thinking to hungry and then verifieswhether philosopher on hisleft or rightisin
eating state. If either philosopher isin eating state, then the philosopher processis
suspended and its state remains hungry. Otherwise, the state of philosopher process
ischanged to eating.

After eatingisfinished, each philosopher invokesput DownChopst i cks()
operation before start thinking. This operation changes the state of philosopher
process to thinking and then invoke veri f yAndAl | ow() operation for
philosopherson hisleft and right side (oneby one). Theveri f yAndAl | ow()
operation verifieswhether the philosopher feelshungry, andif sothenalowshimto
eat in case philosopherson hisleft and right side are not eating.

Check Your Progress

6. Definetheterm semaphore.

7. Whatisbusy waiting?

8. What aretherequirementsof first readers-writersproblem?

9. Givethegenerd structurefor the code segment of areader process.
10. What isamonitor?

Self-Instructional
Material 141

Process Synchronization

142

NOTES

Self-Instructional
Material

6.8 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Agtuationwheresevera processes sharing somedataexecute concurrently
and theresult of execution dependsontheorder inwhichtheshared datais
accessed by the processesis called race condition.

2. Bounded waiting, progress, mutua exclusion arethe mgjor requirements
that must be met by asolution to overcomeacritical section problem.

3. The genera structure for the code segment of a process, say Pi isas

follows

do

{
choosing[i] = true
nunber[i] = MAX(nunber) + 1;
choosing[i] = fal se

for(j=0;j<N;j++)

whi | e(choosing[j])

doNot hi ng() ; <+—— Entry section
whi | e(nunmber[j]!=0 && nunber[j]<number[i] ||
nunber[j]==nunber[i] && j<i)

doNot hi ng();

}

/lcritical section

nunber[i] = 0O; <—|—Exitsection

/lremaining code

4. First, disablinginterruptsisfeasiblein asingle-processor environment only
because doing thisin amultiprocessor environment takestime asmessageis
passed to al the processors. This message passing delays processes from
entering into their critical sections, thus, decreasing the system efficiency.
Second, it may affect the scheduling goals, since the processor cannot be
preempted from aprocessexecutinginitscritical section.

5. TheTest AndSet instruction can be defined asfollows:

boolean TestAndSet (boolean &lock)
{

if (lock)

return lock;
else
{

lock = true;

return false;

6. A semaphore Sisan integer variable which is used to provide a general - Process Synchronization
purpose solution to critical section problem. Two standard atomic operations
aredefinedon S, namely, wai t andsi gnal and after initialization, Sis
accessed only through these two operations.

7. If aprocessisexecutinginitscritical section, thenall other processesthat NOTES
attempt to enter their critical sectionsloop continuoudly inthe entry section.
Thetimethat the process spendsexecuting al oop continuoudy isbusy waiting.
Executing aloop continuously wastes CPU cycles, and isconsidered amajor
problem in multiprogramming systemswith one processor.

8. The first readers—writers problem (the simplest one) requires the following:

All readersand writers should wait if awriter isaccessing the shared

object. It meanswriters should get mutually exclusive accessto the
shared object.

Readers should not wait unlessawriter isaccessing the shared object.
It meansif areader iscurrently reading the shared object and awriter
and areader request, then writer should wait, but reader should not
walit just because of awriter iswaiting.
9. Thegeneral structurefor the code segment of areader processisasfollows:
//structure of a reader process

wait (read); //mutual-exclusion for readers before
updating

//count

count++;

if (count==1) //if it is the first reader
wait (write) ;

signal (read) ;
reading contents of shared object

wait (read) ;

count—;

if (count==0) //if it is the only reader
signal (write) ;

signal (read) ;

10. A monitor isaprogramming language construct whichisalso used to provide
mutually exclusiveaccessto critical sections The programmer definesmonitor
type which consistsof declaration of shared data (or variables), procedures
or functionsthat accessthese variables, and initialization code.

Self-Instructional
Material 143

Process Synchronization

6.9 SUMMARY

- If cooperating processes are not executed in an ordered manner, data
NOTES Incons stency may occur.

- A dtuationwheresevera processes sharing somedataexecute concurrently
and theresult of the execution depends on the order in which the shared
dataisaccessed by the processesiscalled race condition.

- Toavoidraceconditions, someform of synchronization among the processes
isrequired which ensuresthat only one processis manipul ating the share
dataat atime.

- Critical sectionisthe portion of codeof aprocessinwhichit accessesor
changesthe shared data. No two processes are allowed to execute in their
critica sectionsa onetime.

- Thecritical section problemisto design aprotocol that the processescan
useto cooperate.

- A solutionto critica section problem must methemutud exclusion, progress,
and bounded-waiting requirements.

- Peterson proposed an a gorithm to solve the critical section problem for
two processes.

- Lamport proposed an a gorithm, known asbakery algorithm, to solvethe
critical section problemfor N processes.

- Thehardware-supported sol utionsdevel oped for thecritical section problem
that make use of hardwareinstruction available on many systems, thus, are
effectiveand efficient.

- Onasystemwith single-processor, thecritical section problem canbesolved
by disabling interrupts, but this solution isnot feasible in multiprocessor
environment.

- Many systems provide specia hardwareinstructionsto solvethecritical
section problem.

- Onespecid instructionisthe Test AndSet instruction. Animportant
characteristic of thisinstruction isthat it executes asan atomic action.

- Another specia hardwareinstruction isthe Swap instruction that operates
ontwo Boolean variables. It also executes asan atomic action.

- Tomeet al therequirement of the solution for critical section problem, an
algorithmisdevel oped that usesthe Test AndSet instruction.

- A semaphore Sisaninteger variablewhich isused to provide ageneral -
purpose solutionto critical section problem.

- Two standard atomi c operationsare defined on S, namely, waitand signdl,
and after initidization, Sisaccessed only through thesetwo operations.

Self-Instructional
144 Material

- Thesemaphorewhoseinteger vauecanrangeover anunrestricteddomain ~ Process Synchronization
isknown as counting semaphore or general semaphore. Another type of
semaphorewhoseinteger value can range only between 0 and 1 isknown
asbinary semaphore.

- Semaphore can al so be used to solve various synchronization problems.
Somecdlassicd problemsof synchronization includebounded-buffer problem,
readers—writers problem, and dining philosophers problem. These problems
of synchronization are used for testing almost all the newly proposed
synchronization scheme.

- A monitor isaprogramming language construct whichisa soused to provide
mutually exclusive accessto critica sections.

NOTES

- Monitor construct ensuresthat only one process may be executing within
themonitor a atime.

- Programmer can define hisown synchroni zation mechanismsby defining
variables of condition type onwhich only two operations can beinvoked:
watandsgnd.

- Monitor isused to devel op adeadl ock-free sol ution to dining phil osophers
problem.

6.10 KEY WORDS

- Racecondition: A situation where several processes sharing somedata
execute concurrently and the result of the execution depends onthe order
inwhich the shared datais accessed by the processes

- Semaphore Aninteger variablewhichisused to provideagenera-purpose
solutionto critica section problem

- Monitor: A programming language construct which isalso used to provide
mutually exclusive accessto critical sections

6.11 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Definetheprocesssynchronization.

2. What do you understand by bounded waiting in terms of critical section
problem?

3. Statethe Bakery agorithm of multiple- process solution.

4. How dowedefinethewai t andsi gnal operationinthe pseudocode
of semaphores?

Self-Instructional
Material 145

Process Synchronization

146

NOTES

Self-Instructional
Material

5. Definemut ex, ful | andenpty semaphores.
6. What are basi c requirementsfor readers-writers problem?
7. What arethe possibilities of handling the situation occurred by monitors?
8. Writeshort noteson thefollowing:
(& Semaphore
(b) Swapinstruction
(c) Entry and exit section
(d) Critical section
9. What isbusy waiting? How issemaphore used to overcomethe busy waiting
problem?

Long-Answer Questions

1. Explanwithexampleswhy someform of synchronization among processes
isrequired.

2. Ddfinethecriticd section problem. Explaindl therequirementsthat asolution
toacritical section problem must mest.

3. Explainthebakery agorithmto solveacritical section problem.

4. StateaTest AndSet instruction. Also writethealgorithm that usesthe
Test AndSet ingtruction to solvethecritical section problem and meets
all therequirementsof the solution for such aproblem.

5. Explainthe useof semaphoresin devel oping asol ution to abounded-buffer
problem.

6. Describethedining philosophersproblem. Suggest asolutionto thedining-
philosopher problem with the use of monitors.

6.12 FURTHER READINGS

Silberschatz, Abraham, Peter B. Galvin and Greg Gagne. 2008. Operating System
Concepts, 8th Edition. New Jersey: JohnWiley & Sons.

Tanenbaum, Andrew S. 2006. Operating Systems Design and Implementation,
3rd Edition. New Jersey: Prentice Hall.

Tanenbaum, Andrew S. 2001. Moder n Operating Systems. New Jersey: Prentice
Hal.

Deitel, Harvey M. 1984. An Introduction to Operating Systems. Boston (US):
Addison-Wedey.

Stdlings, William. 1995. Operating Systems, 2nd Edition. New Jersey: Prentice
Hal.

Milenkovic, Milan. 1992. Operating Systems. Conceptsand Design. New York:
McGraw Hill Higher Education.

Mano, M. Morris. 1993. Computer System Architecture. New Jersey: Prentice
Hal Inc.

Deadlocks

UNIT 7 DEADLOCKS

Sructure NOTES
7.0 Introduction
7.1 Objectives
7.2 SystemModels
7.3 Deadlock Characterization
7.4 Handling Deadlocks
7.5 Answersto Check Your Progress Questions
7.6 Summary
7.7 Key Words
7.8 Self-Assessment Questions and Exercises
7.9 Further Readings

7.0 INTRODUCTION

A deadlock occurswhen every processin aset of processesisin asimultaneous
walit state and each of themiswaiting for therel ease of aresourceheld exclusvely
by one of thewaiting processesin the set. Deadlock isasituation where aset of
processes are bl ocked because each processishol ding aresourceand waiting for
another resource acquired by some other process. Deadlocks may occur on a
singlesystemor across severa machines. Consider an examplewhentwo trains
arecoming toward each other onthe sametrack and thereisonly onetrack, none
of thetrains can move oncethey arein front of each other. A similar situation
occursin operating systemswhen there aretwo or more processesthat hold some
resources and wait for resources held by other(s). It isvery important to handlea
deadlock beforeit can occur. So, the system checks each transaction beforeitis
executed to make sureit doesnot lead to deadl ock. If thereisevenadight chance
that atransaction may lead to deadlock inthefuture, itisnever alowed to execute.
None of the processes can proceed until at least one of the waiting processes
releasesthe acquired resource.

In this unit, you will study the basic concepts of deadlocks, deadlocks
characterization and methodsfor handling deadl ocks.

7.1 OBJECTIVES

After going throughthisunit, youwill beableto:
- Understand the concept of asystem model
- Discussthefeaturesthat characterize adeadlock
- Describethe different methods of handling deadlock

Self-Instructional
Material 147

Deadlocks

148

NOTES

Self-Instructional
Material

7.2 SYSTEM MODELS

A system consi stsof varioustypesof resources, likeinput/output devices, memory
Space, processors, disks, and so on. For someresourcetypes, severa instances
may beavailable. For example, asystem may havetwo printers. When several
instances of aresourcetypeareavailable, any one of them can be used to satisfy
therequest for that resourcetype.

A processmay need multipleresourcetypesto accomplishitstask. However,
to useany resourcetype, it must follow somestepswhich areasfollows:

(1) Request for therequired resource
(i) Usetheallocated resource
(i) Releasetheresourceafter completing thetask

If therequested resourceisnot available, the requesting processentersa
waiting state until it acquirestheresource. Consider asystemwith aprinter and a
disk driveand two processes P, and P, are executing simultaneously onthis system.
During execution, the process P, requestsfor the printer and process P, requests
for thedisk driveand both the requestsare granted. Further, the process P, requests
for the printer held by process P, and process P, requestsfor thedisk driveheld
by the process P,. Here, both processes will enter awaiting state. Since each
processiswaiting for the rel ease of resource held by other, they will remainin
waiting stateforever. Thissituationiscalled deadl ock.

7.3 DEADLOCK CHARACTERIZATION

Beforediscuss ng themethodsto handleadeadl ock, wewill discussthe conditions
that cause a deadlock and how a deadlock can be depicted using resource
alocationgraph.

Deadlock Conditions
A deadlock occurswhenal thefollowing four conditionsaresatisfied at any given

point of time.

(i) Mutual Exclusion: Only oneprocess can acquireagiven resource at any
point of time. Any other processrequesting for that resource hastowait for
earlier processtoreleaseit.

(i) Hold and Wait: Process holding aresource alocated toit and waiting to
acquireanother resource held by other process.

(iif) NoPreemption: Resourceallocated to aprocesscannot beforcibly revoked
by the system, it can only bereleased voluntarily by the processholding it.

(iv) Circular Wait: A set of processeswaiting for allocation of the resources
held by other processesformsacircular chain in which each processis
waiting for theresource held by its successor processin chain.

Inthe absence of any one of these conditions, deadlock will not occur. We
will discussthese conditionsin detail in subsequent sectionsand see how
they can be prevented.

ResourceAllocation Graph

A deadlock can be depicted with thehelp of adirected graph known asresour ce
allocation graph. Thegraph consists of two different types of nodes, namely,
processes and resources. Processes are depicted as circles and resources as
squares. A directed arc from aprocessto aresourceisknown asrequest edge
and indi catesthat the process hasrequested for theresource and iswaiting for it
to bedlocated. Whereasadirected arc from aresourceto aprocessisknown as
assgnment edgeand indicatesthat the resource hasbeen al ocated to the process.
For example, consider theresource allocation graph showninFigure7.1. Here,
the process P, isholding resource R, and requesting for theresource R, whichin
turnisheld by the process P,. The process P, isrequesting for theresource R,
held by the process P- , thismeansthereis adeadl ock.

R

R>
Fig. 7.1 Resource Allocation Graph

It can be observed that thisgraph formsacycle(P,® R, ® ,® R,® P)).
A cycleintheresourceallocation graph indicatesthat thereisdeadlock and dl the
processesforming the part of the cycle are deadlocked. If thereisnocycleina
graph, thereisno deadlock. Inthisexample, thereisonly oneinstance of each
resourcetype. However, there can be multipleinstances of aresourcetype. The
resource allocation graph for two instances (R,, and R,)) of resourcetypeR,is
showninFigure7.2.

Deadlocks

NOTES

Self-Instructional
Material

149

Deadlocks

150

NOTES

Self-Instructional
Material

R

D &

R21

Roo¥

Fig. 7.2 Resource Allocation Graph for Multiple Instances of a Resource Type

Thisresourcedlocation graph hasthefollowingindications:

(i) ProcessP, iswaiting for theallocation of resource R, held by the process
P,.
(i) ProcessP,iswaiting for theallocation of instance (R,,) of resourcetype
R,
(ili) ProcessP, isholdinganinstance(R,,) of resourcetypeR,.
It can be observed that the graph formsacycle but still processesare not
deadlocked. The process P, can acquire the second instance (R,,) of the
resourcetype R, and compl etesitsexecution. After completing theexecution,
it canreleasetheresourceR, that can be used by the processP,. Since, no

processisinwaiting state, thereisno deadl ock.

Fromthisdiscussion, itisclear that if each resourcetypehasexactly one
instance, cycleinresourceallocation graph indicatesadeadl ock. If each
resourcetypehassevera instances, cyclein resourcealocation graph does
not necessarily imply adeadl ock. Thus, it can be concluded that if agraph
contains no cycle, the set of processes are not deadlocked; however, if
thereisacyclethen deadlock may exist.

7.4 HANDLING DEADLOCKS

A deadlock can be handled infour different wayswhich areasfollows:
- Prevent the deadl ock from occurring.
- Adopt methodsfor avoiding the deadl ock.
- Allow the deadl ock to occur, detect it and recover fromit.
- Ignorethe deadl ock.

Deadlock prevention or deadlock avoidancetechniques can be used
to ensure that deadlocks never occur in a system. If any of these two

techniquesisnot used, adeadl ock may occur. Inthiscase, an algorithm can Deadlocks
be provided for detecting the deadl ock and then using the algorithm to
recover the system from the deadl ock.

Oneor the other method must be provided to either prevent the deadl ock
from occurrence or detect the deadl ock and take an appropriateactionif a
deadlock has occurred. However, if in a system, deadlock occurs less
frequently, say, onceintwo years, thenit is better to ignorethe deadlocks
instead of adopting expens vetechniquesfor deadlock prevention, deadlock
avoidance, or deadlock detection and recovery.

NOTES

Check Your Progress

. Definethesystemmodd.
. What arethe steps performed by aprocessto use any resource type?
. List the conditions necessary for adeadl ock to occur.

. Which of thefollowingisnot associated with the resourcea l ocation graph
to depict adeadlock?

(a) Request edge
(b) Clamedge
(c)Assgnment edge
(d) Noneof these
5. Listthevariouswaysto handle adeadlock.

A W DN P

7.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A system consistsof varioustypesof resources, likeinput/output devices,
memory space, processors, disks, and so on. For some resource types,
severa instancesmay beavailable. For example, asystem may havetwo
printers. When several instancesof aresourcetypeareavailable, any one
of them can be used to satisfy therequest for that resourcetype.

2. Touseany resource, following stepsmust be performed:
() Requestfortherequired resource.
(i) Usetheallocated resource.
(i) Releasetheresourceafter completing thetask.
3. A deadlock occurswhen dl thefollowing four conditionsare satisfied:
(i) Mutud excluson
(i) Holdand wait

Self-Instructional
Material 151

Deadlocks

152

NOTES

Self-Instructional
Material

(iii) No preemption
(iv) Circular wait

4. ClamEdge
5. A deadlock can be handled infour different wayswhich areasfollows:

(i) Prevent thedeadlock from occurring.

(i) Adopt methodsfor avoiding the deadlock.
(iii) Allow the deadlock to occur, detect it and recover fromiit.
(iv) Ignorethedeadlock.

7.6

SUMMARY

- Deadlock occurs when every process in a set of processes are in a

simultaneous wait state and each of them iswaiting for therelease of a
resource held exclusively by one of thewaiting processesinthe set.

- A system consistsof varioustypesof resources, likeinput/output devices,

memory space, processors, disks, and so on. For some resource types,
severa instances may be available. When severd instances of aresource
typeareavailable, any one of them can be used to satisfy the request for
that resourcetype.

- Four necessary conditionsfor adeadlock are mutual exclusion, hold and

wait, no preemption and circular wait.

- A deadlock can be depicted with the help of adirected graph known as

resourceallocation graph.

- In case there are multiple instances of aresource typein asystem, the

deadl ock cannot beavoided using resourcealocation graph agorithm. An
algorithm known as banker’s algorithm is used in such a case.

- If each resourcetype has exactly oneinstance, cycleinresourcealocation

graph indicates adeadlock. If each resource type has several instances,
cycleinresourceallocation graph does not necessarily imply adead| ock.

- Deadlock prevention or deadlock avoidance techniques can be used to

ensurethat deadl ocks never occur in asystem.

1.7

KEY WORDS

- Hold and wait: Process holding aresourceallocated to it and waiting to

acquire another resource held by other process.

- Nopreemption: Resourcedlocated to aprocess cannot beforcibly revoked

by the system, it can only berel eased voluntarily by the processholdingit.

- Resourceallocation graph: A deadlock can be depicted withthe help of Deadlocks
adirected graph known asresource alocation graph.

- Request edge: A directed arc from aprocessto aresourceisknown as

request edge. NOTES

7.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions
1. What do you understand by the system and write the stepsto invokeits
resources?
2. Definemutud exclusionprinciple.
3. What ismeant by circular wait in the deadl ock characterization?
4. How dowedefinethe significanceof assignment edge?
5. Statethedifferent ways of handling any deadlock.

Long- Answer Questions

1. Explainthesignificance of system model sin process coordination.
2. Bridflyillustratethe deadlock conditionsgiving suitableexamples.

3. Elaborate on theindicationsrequired to explain any resource alocation
graph for multipleinstances of aresourcetype.

4. Discusstheimportance of deadlock prevention and briefly describethe
deadlock avoidancetechniques.

7.9 FURTHER READINGS

Silberschatz, Abraham, Peter B. Galvin and Greg Gagne. 2008. Oper ating System
Concepts, 8th Edition. New Jersey: JohnWiley & Sons.

Tanenbaum, Andrew S. 2006. Operating Systems Design and | mplementation,
3rd Edition. New Jersey: Prentice Hdll.

Tanenbaum, Andrew S. 2001. Moder n Operating Systems. New Jersey: Prentice
Hall.

Deitdl, Harvey M. 1984. An Introduction to Operating Systems. Boston (US):
Addison-Wedey.

Salings, William. 1995. Operating Systems, 2nd Edition. New Jersey: Prentice
Hal.

Self-Instructional
Material 153

Deadlocks Milenkovic, Milan. 1992. Operating Systems: Conceptsand Design. New York:
McGraw Hill Higher Education.

Mano, M. Morris. 1993. Computer System Architecture. New Jersey: Prentice

NOTES Hal Inc.

Self-Instructional
154 Material

UNIT 8 DEADLOCK PREVENTION

Sructure

8.0 Introduction

8.1 Objectives

8.2 Deadlock Prevention

8.3 Deadlock Avoidance

8.4 Deadlock Detection

8.5 Deadlock Recovery

8.6 Answers to Check Your Progress Questions
8.7 Summary

8.8 Key Words

8.9 Sdlf-Assessment Questions and Exercises
8.10 Further Readings

8.0 INTRODUCTION

A deadlock can be detected by aresource scheduler asit keepstrack of al the
resourcesthat are alocated to different processes. After adeadl ock isdetected, it
can beresolved using the following methods, such asall the processesthat are
involved in the deadlock areterminated whichisnot agood approach asall the
progress made by the processes is destroyed. Resources can be pre-empted
from some processes and given to otherstill thedeadlock isresol ved. Deadlock
Preventionisvery important to prevent adeadlock beforeit can occur. So, the
system checks each transaction beforeit isexecuted to make sureit does not lead
to deadlock. If thereisevenadight chancethat atransaction may lead to deadl ock
inthefuture, itisnever alowed to execute. Deadl ock Avoidanceisbetter to avoid
adeadl ock rather than take measures after the deadl ock has occurred. Thewait
for graph can be used for deadl ock avoidance. Thisishowever only useful for
smaller databases as it can get quite complex in larger databases. Real-time
operating systems use Deadl ock recovery. Killing al theprocessinvolvedinthe
deadlock. Killing processoneby one. After killing each processcheck for deadlock
again keep repeating the processtill system recover from deadlock.

Inthisunit, youwill study the conceptsof prevention, avoidance, detection
and recovery of deadlock.

8.1 OBJECTIVES

After going throughthisunit, youwill beableto:

- Explainhow adeadlock can be prevented by e€liminating the conditions of
adeadlock

Deadlock Prevention

NOTES

Self-Instructional
Material

155

Deadlock Prevention

156

NOTES

Self-Instructional
Material

- Understand the concept of safeand unsafe state

- Discussvariousdeadlock avoidance dgorithms

- Explainthedifferent deadlock detection methodologies
- Describethewaysto recover from adeadlock

8.2 DEADLOCK PREVENTION

Asstated earlier, adeadl ock occurswhenal of thefour conditionsare satisfied at
any point of time. The deadl ock can be prevented by not dlowingdl four conditions
to be satisfied s multaneoudly; that is, by making surethat at |east one of thefour
conditionsdoes not hold. Now, let usanalyseall four conditionsoneby oneand
see how their occurrence can be prevented.

Eliminating Mutual Exclusion

Themutual exclusion property does not hold for the resourcesthat are sharable.
For example, afile opened in read-only mode can be shared among various
processes. Hence, processeswill never haveto wait for the sharableresources.
However, thereare certain resourceswhich can never be shared, like printer can
work for only oneprocessat atime. It cannot print databe ng sent asoutput from
morethan one process simultaneously. Hence, the condition of mutua exclusion
cannot beeliminated in case of dl theresources.

Eliminating Hold and Wait Condition

This condition can be eliminated by not allowing any processto request for a
resourceuntil it releasestheresourcesheld by it, which isimpractical asprocess
may requiretheresources s multaneoudy. Another way to prevent hold and wait
conditionisby allocating all therequired resourcesto the process before starting
the execution of that process. Thedisadvantageassociated with it isthat aprocess
may not know in advance about the resources that will be required during its
execution. Evenif it knowsin advance, it may unnecessarily hold the resources
which may berequired at the end of itsexecution. Thus, the resources are not
utilized optimaly.

Eliminating No Preemption

Thedimination of thiscondition meansaprocess can re easetheresource held by
it. If aprocessrequestsfor aresource held by some other processtheninstead of
making it wait, al theresources currently held by thisprocess can be preempted.
The processwill berestarted only whenitisallocated therequested aswell asthe
preempted resources. Notethat only those resources can be preempted whose
current working state can be saved and can be later restored. For example, the
resourceslike printer and disk drives cannot be preempted.

Eliminating Circular-Wait Condition

Thecircular-wait condition can be eliminated by assigning apriority number to
each available resource and a process can request resourcesonly inincreasing
order. Whenever, aprocess requestsfor aresource, the priority number of the
required resourceis compared with the priority numbersof theresourcesaready
held by it. If the priority number of arequested resourceisgreater than that of all
the currently held resources, the request isgranted. If the priority number of a
requested resourceislessthan that of the currently held resources, al theresources
with greater priority number must be released first, before acquiring the new
resource.

8.3 DEADLOCK AVOIDANCE

A deadlock can be prevented by eliminating any one of the four necessary
conditionsof the deadlock. Preventing deadl ock using thismethod resultsin the
inefficient useof resources. Thus, instead of preventing deadlock, it can beavoided
by never alowing allocation of aresourceto aprocessif it leadsto adeadlock.
Thiscan be achieved when someadditional information isavail ableabout how the
processes are going to request for resourcesin future. Information can beinthe
form of the number of resources of each typethat will be requested by aprocess
and inwhich order. On the basisof theamount of information available, different
algorithmscan beused for deadlock avoidance.

Oneof thesmplest dgorithmsrequireseach processto declarethemaximum
number of resources (of each type) required by it during itscourse of execution.
Thisinformationisused to construct anagorithmthat will prevent thesystem from
entering astate of deadlock. This deadlock avoidance algorithm continuously
examinesthe state of resource dlocation ensuring thet circular-wait condition never
existsinasystem. The state of resource allocation can be either safe or unsafe.

Safe and Unsafe Sate of Resource Allocation

A stateissaid to be safeif alocation of resourcesto processes doesnot lead to
thedeadlock. Moreprecisdly, asystemisinsafestateonly if thereisasafe sequence.
A safe sequenceisasequence of process execution such that each and every
processexecutestill itscompl etion. For example, cons der asequenceof processes
(P, P, P, ..., P)forming asafe sequence. Inthis sequence, first the process P,
will beexecutedtill itscompletion, and then P, will beexecutedtill itscompletion,
and so on. The number of resources required by any process can be allocated
either from the avail able resources or from the resources held by previously
executing process. When aprocess compl etesits execution, it releasesall the
resources held by it which then can be utilized by the next processin asegquence.
That is, therequest for the resources by the process P, can be satisfied either from
theavailableresourcesor fromtheresourcesheld by the processP_, wherem<n.

Deadlock Prevention

NOTES

Self-Instructional
Material

157

Deadlock Prevention

158

NOTES

Self-Instructional
Material

Sincethis sequenceof process execution issafe, thesystemfollowingitisinthe
safe state. If no such sequence of process execution existsthen the state of the
systemissaidto beunsafe (Refer Figure8.1).

Safe

Deadlock

Unsafe

Fig. 8.1 Relationship between Safe Sate, Unsafe State and Deadlock

Consider asystemin which three processes P,, P, and P, are executing
andthereare 10 ingtances of aresourcetype. The maximum number of resources
required by each process, the number of resources already alocated and thetotal
number of availableresourcesareshownin Figure 8.2.

Maximum Currently allocated

P [9] 3
P, 2
Ps 2
Available resources = 3
() Initial Sate
Maximum Currently allocated Maximum Currently allocated
P 9 3 Py 9 3
P, 4 4 P, 0 0
Ps 7 2 Ps 7 2
Available resources = 1 Available resources =5
(b) ResourceAllocation to ProcessP, (c) Sateafter Completion of ProcessP,
Maximum Currently Maximum Currently
required alocated required alocated
Py 9 3 P1 9 3
P, 0 0 P> 0 0
Ps 7 7 Ps 0 0
Available resources=0 Available resources=7

(d) ResourceAllocationtoProcessP, (e) Sateafter Completion of ProcessP,

Maximum Currently Maximum Currently Deadlock Prevention

required alocated required dlocated

P, 9 9 P, 0 0

P, 0 0 P, 0 0

P; 0 0 Ps 0 0 NOTES
Available resources= 1 Available resources = 10

(f) ResourceAllocationto ProcessP, (g) Stateafter Completion of ProcessP,

Fig. 8.2 Safe Sequence of Execution of Processes

Onthebasisof availableinformation, it can be easily observed that the
resourcerequirementsof theprocess P, canbe easily satisfied. Therefore, resources
aredlocatedtotheprocess P, and itisallowed to executetill itscompletion. After
the execution of the process P,, all the resources held by it are released. The
number of the resources now available are not enough to be allocated to the
process P, whereas, they aresufficient for the process P,. Therefore, resources
aredlocated totheprocess P, anditisallowedto executetill itscompletion. The
number of resourcesavailable after the execution of process P, can now easily be
alocated to the process P,. Hence, the execution of the processesin the sequence
P, P, P issdfe.

Now consider asequence P,, P, P.. Inthis sequence, after the execution
of the process P,, the number of availableresourcesis5, andisalocated tothe
processP,. Even after theallocation of dl the availableresources, the process P,
istill short of oneresourcefor its complete execution. Asaresult, the process P,
entersawaiting state and waitsfor the process P, to rel ease the resource held by
it, whichinturniswaiting for theremaining resourcesto bed | ocated for itscomplete
execution. Now the processes P, and P, arewaiting for each other to releasethe
resources, leading to adeadl ock. Hence, this sequence of processexecutionis
unsafe.

Notethat asafe state is adeadlock-free state, whereas al unsafe states
may or may not result inadeadlock. That is, an unsafe statemay lead to adeadl ock
but not always.

ResourceAllocation Graph Algorithm

Asdiscussed earlier, resource all ocation graph consists of two types of edges:
request edge and assignment edge. In addition to these edges, another edgeknown
asclaim edge can also beintroduced in thisgraph, which helpsin avoiding the
deadlock. A claim edgefrom aprocessto the resourceindicatesthat the process
will request for that resourcein near future. Thisedgeisrepresented to besameas
that of request edge but with dotted line. Whenever the processactualy requests
for that resource, the claim edgeisconverted to the request edge. Also, whenever
aresourceisre eased by any process, corresponding ass gnment edgeisconverted

Self-Instructional
Material 159

Deadlock Prevention

160

NOTES

Self-Instructional
Material

back totheclaim edge. Thepre-requisiteof thisrepresentationisthat al theclam
edgesrelated to aprocessmust be depi cted in the graph beforethe process starts
executing. However, aclaim edge can be added at thelater stageonly if al the
edgesrelated to that processare claim edges.

Whenever, theprocessrequestsfor aresource, the claim edgeis converted
torequest edge only if converting the corresponding request edgeto assignment
edge does not lead to the formation of acyclein agraph, ascyclein agraph
indicatesthe deadl ock. For example, consider theresourced | ocation graph shown
in Figure 8.3, the claim edge from process P, to the resource R, cannot be
converted totherequest edge asit will lead to theformation of cycleinthegraph.

R:

Ro

Fig. 8.3 Resource Allocation Graph with Claim Edges

Banker’s Algorithm

In casethere are multipleinstances of aresourcetypein asystem, the deadlock
cannot be avoided using resource alocation graph a gorithm. Thisisbecausethe
presence of cycleintheresourceallocation graph for multiple resourcesdoes not
always imply the deadlock. In such cases, an algorithm known as Banker’s
algorithmisused. Inthisagorithm, any process entering thesystem must inform
the maximum number of resources (less than the total number of available
resources) required duringitsexecution. If al ocating thismuch number of resources
to theprocessleavesthe systemin asafe state only than theresourcesareallocated.
Ontheother hand, if allocation of resourcesleavesthe systemin unsafe state then
theresources are not allocated and the processis madeto wait for some other
processes to release enough resources. To implement the banker’s algorithm certain
datastructuresarerequired, which help in determining whether the systemisin
safestate or not. Thesedatastructuresare asfollows:

1. AvailableResources, A: A vector of sizeq storesinformation about the
number of resourcesavailable of each type.

2. Maximum, M A matrix of order pxq storesinformation about the maximum
number of resources of each typerequired by each process (p number of
processes). Thatis,M i][]] indicatesthemaximum number of resources
of typej required by the processi .

3. Current Allocation, C. A matrix of order px q storesinformation about
the number of resources of each typeallocated to each process. That is,
Ci][]j] indicatesthe number of resourcesof typej currently held by
the processi .

4. Required, R A matrix of order pxq storesinformation about theremaining
number of resources of each type required by each process. That is,
R i][]j] indicatestheremaining number of resourcesof typej required
by the processi . Notethat thisvector can be obtained by M—C, thatis,
REITLJI=MII[jT-CLi]li].
Thevalues of these data structures keep on changing during the execution of
processes. Note that the condition A<=B holdsfor thevectorsAand B of sizep,
ifandonlyif A[i] <=B[i] forali=1,2,3,...,p.Forexample,if A={ 2,1}
and B={ 3,4} , then A<=B.

Safety Algorithm

Thisagorithm us used to determinewhether asystemisin safe state.

To understand the algorithm for determining whether asystem isin safe state,
consider avector Conpl et e of sizep. Followingarethe stepsof thea gorithm.

1. Initialize Compl et e[i] =Fal se for al i =1, 2, 3, ..., p.
Conpl et e[i] =Fal se indicates that the i th process is still not
completed.

2. Search for ani , such that Conpl et e[i] =Fal se and (R<=A) that
is, resourcesrequired by thisprocessislessthan theavailableresources. If
no such processexists, then goto Step 4.

3. Allocatetherequired resourcesand | et the processfinishitsexecution and
set Conpl et e[i] =Tr ue for that process. Go to Step 2.

4. If Conpl ete[i]=True for dl i, then the system is in safe state.
Otherwise, it indicates that there exist a process for which
Conmpl et e[i] =Fal se and resources required by it are more than
theavailableresources. Hence, itisin unending waiting stateleadingto an
unsafestate.

Resource-Request Algorithm

Onceit isconfirmed that systemisin safe state, an algorithm called r esour ce-
request algorithmisused for determining whether the request by aprocess can
be satisfied or not. To understand thisalgorithm, let Req beamatrix of the order
px(, indicating the number of resources of each type requested by each process
atany givenpointof time. Thatis,Req[i] [] indicatesthe number of resources
of j thtyperequested by thei t h processat any given point of time. Following
arethestepsof thisagorithm:

Deadlock Prevention

NOTES

Self-Instructional
Material

161

Deadlock Prevention 1. IfReq[i][j]l<=Ri][]j],gotoStep2, otherwisean error occurs
asprocessisrequesting for more resources than the maximum number of
resourcesrequired by it.

2. 1fReq[i][j] <=A[i][]j], goto Step 3, otherwise the process
Pi must wait until therequired resourcesare available.

3. Allocatetheresourcesaredlocated and makethefollowing changesinthe

NOTES

datastructures.

A = A — Req
C = C + Reqg
R =R - Req

For example, consider a system with three processes (P1, P2 and P3) and
threeresourcetypes(X, Y and Z) . Thereare 10 instances of resourcetypeX,
50f Yand 7 of Z. Thematrix Mfor maximum number of resourcesrequired by the
process, matrix Cfor thenumber of resources currently allocated to each process
and vector A for maximum availableresourcesare shownin Figure 8.4.

M C
XY Z XY Z
PL17]5]6 P|O[1]0
P215]2)2 P,|2(0]|0
P;:19(0]|2 P;13l0]f2

(a) Maximum Matrix (b) Current Allocation Matrix

R

A Xy z
XY 7 P.|714]|6
P;16{0|0

(c) Available Resources vector (d) Required Matrix

Fig. 8.4 Initial Sate of System

Now, the matrix R representing the number of remaining resources required by
each process can be obtained by the formulaM—C, whichisshownin Figure 8.4.

It can beobserved that currently thesystemisin safe stateand safe sequence
of execution of processes is (P2, P3, P1). Now suppose that process P2
requests one moreresource of eachtype, that is, therequest vector for process
P2is(1,1,1). First, itischecked whether thisrequest vector islessthan or equal
toitscorresponding required vector (3,2,2). If the processhasrequested for less
number of resources than the declared maximum number of resourcesof each
typebyitatinitid stage, thenitischecked whether these much number of resources
of eechtypeareavailable. If itisthenitisassumed that therequest isgranted, and
the changeswill be madeinthe corresponding matricesshownin Figure8.5.

Self-Instructional
162 Material

M c Deadlock Prevention
XY z XY Z
Pi|7|5(|6 P.lol1]0
P>15]2|2 P,|3]1]1
P:|9[0|2 P;|3]|0]2
NOTES
(a) Maximum Matrix (b) Current Allocation Matrix
R
A XY zZ
XY Z Pi|7(4]|6
I EIE
P;|6(0]|0
(c) Available Resources vector (d) Required Matrix

Fig. 8.5 State after Granting Request of P2

Thisnew state of system must be checked whether itissafe. For this, anagorithm
is executed to check the safe state of the system and it is determined that the
sequence (P2, P3, P1) isasafe sequence. Thus, therequest of processP2 is
grantedimmediately.

Consider another state of asystem shownin Figure 8.6. Now, arequest for
(1, 2, 2) from process P2 arrives. If thisrequest isgranted, theresulting stateis
unsafe. Thisisbecause after the complete execution of processP2, theresultant
vector Ais(5,4,5). Clearly, the resource requirement of processes P1 and P3
cannot be satisfied. Thus, even though the system has resources, request cannot
be granted.

M C
XY z X Y Z
P|7]5|6 P,l2|1]0
P,|5]2]|2 P,[4]0]|0
P;9(0]2 P 3]0]f2
(a) Maximum Matrix (b) Current Allocation Matrix
R
A XY zZ
X Y Z P.|5]14|6
Pl1(2]2
P;|6|0]|0

Fig. 8.6 Example of Unsafe State

Check Your Progress
1. Statetheprocessof eiminating mutua exclusion.
2. Definesafe sequence.
3. Mention different ways by which asystem can recover from adeadlock.
4. What do you mean by claim edgein resourcealocation graph agorithm?
5. How do we define Banker's a gorithm of resources?

6. Writestepsto processthe resource-request algorithm?

Self-Instructional
Material 163

Deadlock Prevention

164

NOTES

Self-Instructional
Material

8.4 DEADLOCK DETECTION

Thereisapossbility of deadlock if neither the deadl ock prevention nor deadlock
avoidance methodisappliedinasystem. In such astuation, an algorithm must be
provided for detecting the occurrence of deadl ock in asystem. Oncethe deadlock
isdetected, amethodology must be provided for therecovery of the system from
thedeadl ock. Inthissection, wewill discuss someof theways by which deadlock
can be detected.

Single Instance of Each Resource Type

When only singleresource of each typeisavailable, the deadlock can be detected
by using variation of resource allocation graph. In this variation, the nodes
representing resources and corresponding edgesareremoved. Thisnew variation
of resource allocation graph is known as wait-for graph, which shows the
dependency of a process on another process for the resource allocation. For
example, an edge from the process Pi to Pj indicatesthat the processPi is
waiting for the processPj toreleasetheresourcesrequired by it. If therearetwo
edgesPn® R and R ® Pminresourcealocation graph, then the corresponding
edge in the wait-for graph will be Pn® Pmindicating that the process Pn is
waliting for the process Pmfor therel ease of the resources. A resourceall ocation
graph involving 6 processes and 5 resources is shown in Figure 8.7(a). The
correspondingwait-for graphisshownin Figure8.7(b).

(a) Resource Allocation Graph (b) Wait-for Graph

Fig. 8.7 Converting Resource Allocation Graph to Wait-For Graph

If thereexistsacycleinwait-for graph, thereisadeadl ock inthe system, and the
processesforming thepart of cycleareblocked inthe deadlock. Inwait-for graph
(Refer Figure 8.6), the processes P2, P3 and P6 form thecycle and henceare
blocked in the deadl ock. To take appropriate action to recover from thissituation,
an dgorithm needsto be called periodically to detect existence of cycleinwait-for

graph.
Multiple Instances of a Resource Type

When multipleinstances of aresourcetypeexist, thewait-for graph becomes
inefficient to detect the deadl ock inthe system. For such systemn, another dgorithm

which uses certain data structures similar to the ones used in banker’s algorithm is Deadlock Prevention
applied. Thedatastructuresused areasfollows:

(i) Available Resources, A: A vector of sizeq storesinformation about the
number of avail able resources of each type.

(ii) Current Allocation, C: A matrix of order pxq storesinformation about
the number of resources of each type allocated to each process. That is,
di]1[j],indicatesthenumber of resourcesof typej currently held by
theprocessi .

(i) Request, Req: A matrix of order pxq storesinformation about the number
of resources of each type currently requested by each process. That is,
R i][j],indicatesthenumber of resourcesof typej currently requested
by the processi .
To understand theworking of deadl ock detection algorithm, consider avector
Conpl et e of sizep. Following arethe stepsto detect the deadl ock.

1. Initialize Compl et e[i] =Fal se for al i =1, 2, 3, ..., p.
Conpl et e[i] =Fal se indicates that the i th process is still not
completed.

2. Search for ani , such that Conpl et e[i] =Fal se and (Reg<=A),
that is, resourcescurrently requested by thisprocessislessthantheavailable
resources. If no such processexists, then goto Step 4.

3. Allocatetherequested resourcesand et the processfinishitsexecution and
set Conpl et e[i] =Tr ue for that process. Go to Step 2.

4. If Conpl et e[i] =Fal se forsomei , thenthesystemisinthe state of
deadlock andthei th processisdeadlocked.

NOTES

8.5 DEADLOCK RECOVERY

Once the system has detected deadlock in the system, a method is needed to
recover the system from the deadlock and continue with the processing. Three
different ways in which system can be recovered are—terminate one or more
process to break the circular-wait condition, preempt the resources from the
processesinvolved in the deadlock and roll back the processesto the previous
checkpoint.

Terminating the Processes

Therearetwo methodsthat can be used for terminating the processesto recover
from thedeadlock. Thesetwo methodsare asfollows:

- Terminating oneprocessat atimeuntil thecircular-wait conditionis
eliminated. It involves an over head of invoking a deadlock detection
algorithm after terminating each processto detect whether circular-wait
condition is eliminated or not, that is, whether any processes are till
deadl ocked.

Self-Instructional
Material 165

Deadlock Prevention

166

NOTES

Self-Instructional
Material

- Terminating all processesinvolved in thedeadlock. Thismethod will
definitely ensure the recovery of a system from the deadlock. The
disadvantage of thismethod isthat many processes may haveexecuted for
along time; close to their completion. As a result, the computations
performedtill thetime of termination arediscarded.

Inboth the cases, all the resources which were acquired by the processes
being terminated arereturned to the system. Whileterminating any process,
it must be ensured that it does not leave any part of the system in an
incons stent state. For example, aprocessmight beinthemiddleof updating
adisk file and termination of such a process may leave that filein an
incong stent state. Similarly, aprinter might beinthemiddleof printing some
document. Inthis casewhen systemisrecovered from the deadl ock, the
system must reset the printer to acorrect state.

Incaseof partia termination, while selecting the processto beterminated,
the choice of processes must be such that it incurs minimum cost to the
system. Thefactorswhich can effect the sel ection of aprocessfor termination
areasfollows:

- Number of remaining resourcesrequired by it to completeitstask.
- Number of processesrequired to beterminated.

- Number and type of resources held by the process.

- Duration of timefor which process has aready been executed.

- Priority of the process.

Preempting the Resour ces

An dternative method to recover system from the state of deadlock isto preempt
the resourcesfrom the processes one by oneand alocate them to other processes
until thecircular-wait conditioniseliminated. Thestepsinvolvedinthepreemption
of resourcesfrom the processare asfollows:

1. Select aProcessfor Preemption: Thechoice of resourcesand processes
must be such that they incur minimum cost to the system. All thefactors
mentioned earlier must be cons dered whilemaking choice.

2. Roll Back of the Process: After preempting the resources, the
corresponding process must berolled backed properly so that it does not
leavethe system in an inconsi stent state. Since resources are preempted
from theprocess, it cannot continuewith thenormal execution, hence must
be brought to some safe state from where it can be restarted | ater. In case
no such safe state can be achieved, the process must be totally rolled
backed. However, partia rollback isawayspreferred over total rollback.

3. Prevent Sarvation: In casethe selection of aprocessisbased on the cost
factor, itisquiet possi blethat same processis selected repeatedly for the
rollback leadingtothesituation of starvation. Thiscan beavoided by including
the number of rollbacks of agiven processinthecost factor.

10.

. What do you understand by wait-for-graph?
. Satethedatastructuresinvolvedin banker'sa gorithm for multipleinstances

. What arethetwo methodsthat can be used for terminating the processes

Check Your Progress

of aresourcetype.

to recover from the deadlock?

Writethemajor stepsrequired in the preemption of resourcesfrom the
process.

8.6

ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

. Themutual exclusion property does not hold for the resourcesthat are

sharable. For example, afile opened in read-only mode can be shared
among various processes. Hence, processeswill never havetowait for the
sharableresources. However, there are certain resourceswhich can never
be shared, like printer can work for only one processat atime. It cannot
print databeing sent as output from more than one process simultaneoudly.
Hence, thecondition of mutua exclusion cannot beeliminatedincaseof dl
theresources.

. A safe sequenceis a sequence of process execution such that each and

every processexecutestill itscompl etion. For example, consider asequence
of processes(P,, P,, P, ..., P) forming asafe sequence. Inthis sequence,

first the process P, will be executedtill itscompletion, and then P, will be
executedtill itscompletion, and so on.

. Thethreedifferent waysin which system can berecovered areasfollows,

terminate one or more processto break the circular-wait condition, pre-
empt theresourcesfrom the processesinvol ved in the deadlock and roll
back the processesto the previous checkpoint.

. Resourcedllocation graph congists of two types of edges. request edgeand

assignment edge. In additionto these edges, another edgeknown asclaim
edge can aso be introduced in this graph, which helpsin avoiding the
deadlock. A claim edge from aprocessto the resourceindicatesthat the
processwill request for that resourcein near future. Thisedgeisrepresented
to be sameasthat of request edge but with dotted line.

. Inthisagorithm, any processentering the sysem must inform themaximum

number of resources (lessthan thetotal number of avail able resources)
required duringitsexecution. If dlocating thismuch number of resourcesto
the process|eavesthe system in a safe state only than the resources are

Deadlock Prevention

NOTES

Self-Instructional
Material

167

Deadlock Prevention

168

NOTES

Self-Instructional
Material

alocated. Ontheother hand, if all ocation of resources|eavesthesystemin
unsafe state then theresources are not alocated and the processismadeto
wait for some other processesto rel ease enough resources. Toimplement
the banker’s algorithm certain data structures are required, which help in
determining whether the systemisin safe state or not.

6. Following arethestepsof thisagorithm:
LIfReq[i][j]l<= Ri][]j],goto Step 2, otherwise an error
OCCurs as process is requesting for more resources than the maximum
number of resources required by it.
2.1fReq[i][J] <=Ali][]], goto Step 3, otherwisethe process
Pi must wait until therequired resourcesare available.
3. Allocatetheresourcesare all ocated and make thefollowing changesin
thedatastructures.

A = A — Req
C = C + Reqg
R =R - Req

. Whenonly singleresource of each typeisavailable, the deadlock can be
detected by using variation of resource dlocation graph. Inthisvariation,
the nodes representing resources and corresponding edges areremoved.
Thisnew variation of resource alocation graphisknown aswait-for graph,
which shows the dependency of a process on another process for the
resourcealocation.

8. Whenmultipleingtancesof aresourcetypeexis, thewait-for graph becomes
inefficient to detect the deadl ock inthe system. For such system, another
algorithm which uses certain datastructures similar to theonesused in
banker’s algorithm is applied. The data structures used are as follows:

(i) Available Resources, A: A vector of sizeq storesinformation about
thenumber of availableresources of each type.

(ii) CurrentAllocation, C: A matrix of order pxg storesinformation about
the number of resources of eachtypealocated to each process. That
issdi][]j],indicatesthe number of resourcesof typej currently
held by the processi .

(i) Request, Req: A matrix of order px q storesinformation about the
number of resourcesof each type currently requested by each process.
Thatis, R i][]],indicatesthe number of resources of type |
currently requested by the processi .

9. Therearetwo methodsthat can be used for terminating the processesto
recover from the deadl ock. Thesetwo methodsareasfollows:

Terminating one processat atime until thecircular-wait conditionis
eliminated. Itinvolvesan over head of invoking adeadlock detection
agorithm after terminating each processto detect whether circular-wait
conditioniseliminated or not, that is, whether any processesare till
deadl ocked.

Terminating all processesinvolved in thedeadlock. Thismethod will Deadlock Prevention
definitely ensure the recovery of a system from the deadlock. The

disadvantage of thismethod isthat many processes may have executed

for alongtime; closetotheir completion.

10. Thestepsinvolved inthe preemption of resourcesfrom theprocessareas
follows

1. SdectaProcessfor Preemption: Thechoiceof resourcesand processes
must be such that they incur minimum cost to the system. All thefactors
mentioned earlier must be cons dered whilemaking choice.

2. Roll Back of the Process. After preempting the resources, the
corresponding process must berolled backed properly so that it does
not leave the system in an inconsistent state. Since resources are
preempted from the process, it cannot continue with the normal
execution, hencemust be brought to some safe statefromwhereit can
berestarted | ater. In case no such safe state can be achieved, the process
must be totally rolled backed. However, partial rollback is always
preferred over total rollback.

3. Prevent Starvation: In case the selection of aprocessisbased onthe
cost factor, it isquiet possiblethat same processis sel ected repeatedly
for therollback |eading to thesituation of starvation. Thiscan beavoided
by including thenumber of rollbacksof agiven processinthecost factor.

NOTES

8.7 SUMMARY

- A deadlock can be depicted with the help of adirected graph known as
resourceallocation graph.

- In case there are multiple instances of aresource type in asystem, the
deadl ock cannot beavoided using resource all ocation graph agorithm. An
algorithm known as banker’s algorithm is used in such a case.

- If eech resourcetype has exactly oneinstance, cycleinresourcealocation
graph indicates adeadlock. If each resourcetype has several instances,
cycleinresourceallocation graph does not necessarily imply adeadl ock.

- Deadlock prevention or deadl ock avoidance techniques can be used to
ensurethat deadl ocks never occur in asystem.

- A deadlock can be prevented by not allowing all four conditions to be
satisfied smultaneoudly, that is, by making surethat at |east oneof thefour
conditionsdoesnot hold.

- A deadlock can beavoided by never allowing alocation of aresourcetoa
processif itleadsto adeadlock. Thiscan be achieved when someadditiona
information isavailable about how the processes are going to request for
resourcesinfuture.

Self-Instructional
Material 169

Deadlock Prevention

170

NOTES

Self-Instructional
Material

- A stateissaid to be safeif alocation of resourcesto processes does not

lead to thedeadlock. Moreprecisdly, asystemisin safe stateonly if there
is asafe sequence. A safe sequence is a sequence of process execution
such that each and every processexecutestill its completion. If no such
sequence of process execution existsthen the state of the systemissaidto
beunsafe.

- Thereisapossibility of deadlock if neither deadlock prevention nor deadlock

avoidance method isapplied inasystem. In such asituation, an agorithm
must be provided for detecting the occurrence of deadlock in asystem.

- When only singleresource of each typeisavailable, the deadlock can be

detected by using variation of resource alocation graph known aswait-for
graph.

- Whenmultipleinstancesof aresourcetypeexi<t, thewait-for graph becomes

inefficient in detecting the deadl ock in the system. For such system, another
algorithm which uses certain data structuressimilar to the onesused in
banker’s algorithm is applied.

- Oncethedeadlock is detected, amethodol ogy must be provided for the

recovery of the system from the deadl ock.

- The three different ways in which system can be recovered are—terminate

one or more process to break the circular-wait condition, preempt the
resourcesfrom the processesinvolved in the deadl ock and roll back the
processesto the previous checkpoint.

8.8

KEY WORDS

- Deadlock: It occurs when every processin a set of processesisin a

simultaneous wait state and each of them iswaiting for therelease of a
resource held exclusively by one of thewaiting processesin the set

- Safestate: A stateinwhich theallocation of resourcesto processes does

not leed to adeadlock; asystemisin safestateonly if thereisasafe sequence.

- Safesequence: A sequenceof processexecution such that each and every

process executestill itscompletion. If no such sequenceof processexecution
existsthen the state of the systemissaidto beunsafe

8.9

SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Statetheprocessof diminating circular-wait condition.
2. What ismeant by safe sequencein resource alocation?

. What do you understand by the terms ‘safe state’ and ‘unsafe state’? Deadlock Prevention
. State the data structures involved in banker’s algorithm.

. What isthesignificance of resource-request algorithm?

. Briefly explaintheinitia stateof system aongwith thesuitableexamples. NOTES

. What arerequired stepsto detect the deadlock?

. Definethefactorswhich effect the sel ection of aprocessfor termination.
9. How dowedefinethe method of pre-empting resources?

0 N o O A W

Long-Answer Questions

1. Explainthefour conditions necessary for the deadl ock.

2. Consider a system having three instances of a resource type and two
processes. Each process needs two resources to compl eteits execution.
Can deadlock occur? Explaininbrief.

3. Consider asystemisinanunsafe state. Illustrate how the processes can
compl etetheir execution without entering adeadlock state.

4. Consider asystem hassix instances of aresourcetypeand m processes.
For which valuesof m, deadlock will not occur?

5. Consder asystem consisting of four processesand asingleresource. The
current state of the systemisgiven here.

Maximummatrix Current alocation matrix

For thisstateto be safe, what shoul d be the minimum number of instances
of thisresource?

6. Consder thefollowing state of asystem.

M C
XY Z XY Z
P.15]14]3 P3]1]1
P,{3|0|6 P,|1/0]|4
Pl 7]5]1 P:{3]2]0
A

Self-Instructional
Material 171

Deadlock Prevention

172

NOTES

Self-Instructional
Material

Answer the following questions using the Banker’s algorithm:
(i) What isthe content of thematrix Required?
(if) Isthesysteminasafe state?

(ii) If arequest from aprocess P2arrivesfor (1,0,2) can therequest be
granted immediately.

8.10 FURTHER READINGS

Silberschatz, Abraham, Peter B. Galvin and Greg Gagne. 2008. Operating System
Concepts, 8th Edition. New Jersey: JohnWiley & Sons.

Tanenbaum, Andrew S. 2006. Oper ating Systems Design and Implementation,
3rd Edition. New Jersey: PrenticeHall.

Tanenbaum, Andrew S. 2001. Moder n Operating Systems. New Jersey: Prentice
Hdl.

Deitel, Harvey M. 1984. An Introduction to Operating Systems. Boston (US):
Addison-Wedey.

Stdlings, William. 1995. Operating Systems, 2nd Edition. New Jersey: Prentice
Hal.

Milenkovic, Milan. 1992. Operating Systems. Conceptsand Design. New York:
McGraw Hill Higher Education.

Mano, M. Morris. 1993. Computer System Architecture. New Jersey: Prentice
Hal Inc.

Memory Management

BL OCK AV Srategies
MEMORY MANAGEMENT

UNIT9 MEMORY MANAGEMENT NOTES
STRATEGIES

Sructure

9.0 Introduction
9.1 Objectives
9.2 Preliminaries
9.3 Memory Management Strategies
9.4 ContiguousMemory Allocation
94.1 SinglePartition
94.2 MultiplePartitions
94.3 Relocation and Protection
9.5 Noncontiguous Memory Allocation
95.1 Paging
95.2 Segmentation
95.3 Segmentation with Paging
9.6 Swapping
9.7 Virtua Memory
9.8 Virtual Memory Management: Demand Paging
9.9 Copy-On-Write
9.10 Page Replacement
9.10.1 First-InFirst-Out Page Replacement
9.10.2 Optimal Page Replacement
9.10.3 Least Recently Used Page Replacement
9.104 The Second Chance Page Replacement

9.105 Counting-Based Page Replacement Algorithm
9.11 Answersto Check Your Progress Questions
9.12 Summary
9.13 Key Words
9.14 Self-Assessment Questions and Exercises
9.15 Further Readings

9.0 INTRODUCTION

Most systemsa low multiple processesto residein themain memory at the same
timetoincrease CPU utilization. Itisthejob of thememory manager, apart of the
operating system, to manage memory between these processesin an efficient way.
For this, it kegpstrack of which part of thememory isoccupied and which partis
free, allocates and deall ocates memory to processes, whenever required, and so
on. Moreovey, it provides aprotection mechanism to protect thememory alocated

Self-Instructional
Material 173

Memory Management
Srategies

NOTES

Self-Instructional
174 Material

to each process from being accessed by other processes. For managing the
memory, the memory manager may useastrategy from any number of available
memory management strategiesthat arediscussed inthisunit.

All thesestrategiesrequirethe entire processto bein main memory before
their execution. Thus, thesize of the processislimited to the size of thephysical
memory. To overcomethislimitation, amemory management scheme called
over laying can beused, which allows aprocessto executeirrespective of the
size of the system’s having insufficient physical memory. The programmer splits a
program into smaller partscalled overlaysin such away that notwo overlaysare
required to bein main memory at the sametime. An overlay isloaded into memory
only when it isneeded. Initialy, overlay O would run. When it iscompleted, it
would call another overlay, and so on until the processterminates. These overlays
reside onthedisk and are swapped in and out of memory dynamically as needed,
thereby reducing the amount of memory needed by the process. Despiteall these
advantages, one major disadvantage of thistechniqueisthat it requires major
involvement of the programmer. Moreover, splitting aprograminto smaller parts
isquitetimeconsuming.

Thisresulted in theformul ation of another memory management technique
known asvirtua memory. Virtua memory givestheillusonthat thesyssemhasa
much larger memory thanisactually available. The combined size of code, data
and stack may exceed the amount of physical memory. Virtua memory frees
programsfrom the constraintsof physical memory limitation. Thevirtual memory
can beimplemented by demand paging or demand segmentation. Of thesetwo
ways, demand paging iscommonly used asit iseasier toimplement.

9.1 OBJECTIVES

After going throughthisunit, youwill beableto:
- Differentiate between logical and physica addresses
- Understand the basi ¢ concept of addressbinding
- Discussthe basic memory management strategies
- Explainthememory management scheme, cdled paging

- Understand how the memory management scheme, segmentation, isused
to overcomethe drawbacks of paging

- Describe a memory management scheme that is a combination of
segmentation and paging (called segmentati on with paging)

- Understand the process of swapping

- Understand the concept of virtual memory

- Understand how thevirtua memory technique worksby using demand
pagng

- Explainthe copy-on-write process Memory Management
Srategies

- Discussthevarious pagereplacement agorithms

9.2 PRELIMINARIES NOTES

Every byteinthe memory hasaspecific addressthat may range from O to some
maximum value as defined by the hardware. Thisaddressisknown asphysical
address. Whenever, aprogramisbrought i nto the main memory for execution, it
occupies certain number of memory locations. The set of all physical addresses
used by the programisknown as physical addr ess space. However, beforea
program can be executed, it must be compiled to produce the machine code. A
program iscompiled to run starting from somefixed addressand accordingly all
thevariablesand proceduresused in the source program are assigned some specific
addressesknown aslogical addr esses. Thus, in machine code, all referencesto
dataor code are made by specifying thelogica addressesand not by thevariable
or procedure names, and so on. Therange of addressesthat user programs can
useis system-defined and the set of all logical addresses used by auser program
isknown asitslogical addressspace.

When auser programishbrought into main memory for execution, itslogica
addresses must be mapped to physical addresses. Thismapping from addresses
associated with aprogram to memory addressesisknown asaddr essbinding.
The addressbinding can take placeat one of thefollowing times:

- CompileTime Addresshbinding takes place at compiletimeif itisknown
which addressesthe program will occupy in themain memory at that time.
Inthis case, the program generatesabsol ute code at thecompiletimeonly,
that is, logical addressesare sameasthat of physical addresses.

- Load Time: Addresshinding occursat load timeif itisnot known a compile
timewhi ch addressesthe program will occupy inthemain memory. Inthis
case, the program generatesr el ocatable code at the compiletimewhichis
then converted into the absol ute code at theload time.

- Run Time Theaddresshinding occursat runtimeif the processis supposed
to move from one memory segment to other during itsexecution. Inthis
caseal 50, the program generatesrel ocatable code at compiletimewhichis
then converted into the absol ute code at theruntime.

Note: The run time address binding is performed by the hardware device known as
Memory-Management Unit (MMU).

9.3 MEMORY MANAGEMENT STRATEGIES

To improve utilization of the CPU and the speed of the computer’s response to its
users, the system keeps several processesin memory, that is, several processes
sharememory. Dueto the sharing of memory, thereisneed of memory management.

Self-Instructional
Material 175

Memory Management Therearevariousstrategiesthat are used to manage memory. All these strategies

Srategies alocate memory to the processes using either of following two approaches.
- Contiguousmemory dlocation.
NOTES - Non-contiguous memory alocation.

Both these approachesare discussed in detail in the subsequent sections.

9.4 CONTIGUOUS MEMORY ALLOCATION

In contiguous memory allocation, each processisallocated asingle contiguous
part of the memory. The different memory management schemesthat are based
on thisapproach are single partition and multiple partitions.

9.4.1 Single Partition

Oneof thes mplest waysto managememory isto partition themain memory into
two parts. Oneof them ispermanently all ocated to an operating system whilethe
other part is allocated to the user process (Refer Figure 9.1). Inthisfigure, an
operating systemisinlower part of the memory. However, itisnot essential that
operating system must reside at the bottom of thememory; it canreside at the
upper part of thememory aso. In order to provideacontiguous areafor the user
process, it usually resides at one extreme end of the memory. The factor that
decidesthelocation of the operating system in the memory isthelocation of the
interrupt vector. An operating system isplaced at the same end of the memory
wheretheinterrupt vector islocated.

Max
User process
Operating
system
0

Fig. 9.1 Memory Having Sngle Partition

Inthisscheme, only one process can be executed at atime. WWhenever, aprocess
isto beexecuted, the operating system | oadsit into themain memory for execution.
After termination of that process, the operating system waitsfor another process.
When another process arrives, the operating systemloadsit into the main memory;,
thusoverwritingthefirst one.

Self-Instructional
176 Material

Thisschemeiseasy toimplement. Generally, the operating system needsto Memory Management

keeptrack of thefirst and thelast | ocation dlocated to theuser processes. However, Sraegies
inthiscase, thefirst locationisimmediately following the operating system and the
last location isdetermined by the capacity of the memory. It needs no hardware NOTES

support except for protecting the operating system from the user process.

Note: The memory management scheme having single partition is used by single process
microcomputer operating systems, such as CP/M and PC DOS.

9.4.2 Multiple Partitions

A single partition schemerestrictsthe systemto have only one processin memory
at a time that reduces utilization of the CPU as well as of memory. Thus,
monoprogramming syssemsarerardly used. M ost of the systems used today support
multiprogramming which alowsmultiple processestoresidein the memory at the
sametime. Thesmpleway to achievemultiprogrammingisto dividemain memory
into anumber of partitionswhich may beof fixed or variablesize.

Fixed Partitions

Inthistechnique, each partitionisof fixed sizeand can contain only one process.
There are two alternatives for this technique—equal-sized partition and unequal-
sized partition (Refer Figure 9.2). Firdt, consider the case of equal-sized partitions
whereany process can beloaded into any partition. Whenever, apartitionisfree,
aprocesswhosesizeislessthan or equal to the partition sizeisselected fromthe
input queueand loaded into this partition. When the processterminates, the partition
becomesfreeto bealocated to another process. Theimplementation of thismethod
doesnot requiremuch effort sinceall partitionsare of samesize. Theoperating
systemisrequired to keep track of only the partition occupied by each process.
For this, it maintainsatablethat kegpseither the starting address of each process
or the partition number occupied by each process.

24M 24M
2M
20M
16M 18M
12M 14M
8M M
Operating Operating
sysem system
0
0
(@) Equal -9z Partitions (b) Unequal-9ze Partitions

Fig. 9.2 Memory having Multiple Fixed Partitions Self-Instructional

Material 177

gf;‘g; ?’ESMa”agefmm Thereisoneproblemwith thismethod that isthememory utilizationisnot efficient.

Any processregardlessof how small itis, occupiesan entirepartition whichleads

to thewastage of memory withinthe partition. This phenomenonwhich resultsin

thewastage of memory withinthe partitioniscaledinter nal fragmentation. For

NOTES example, loading aprocessof size4M-n bytesinto apartition of sze4M (where,

M standsfor Megabytes) would result in awasted space of n byteswithinthe
partition.

This problem cannot be resolved completely but can be reduced to some
extent by using unequal-sized partition method where a separate input queueis
maintained for each partition. Whenever aprocess arrives, it is placed into the
input queue of the smallest partition large enough to hold it. When this partition
becomes free, it is allocated to the process. According to Figure 9.2(b), if a
process of size 5M arrives, it will be accommodated in the partition of size 6M.
In this case also, some memory iswasted, that is, internal fragmentation still
exists, but less than that of equal-sized partition method.

With thismethod, there may be possibility that theinput queuefor alarge
partitionisempty but the queuefor small partitionisfull (Refer Figure9.3(a)).
That is, the small jobs have to wait to be loaded into memory, though alarge
amount of memory isfree. To prevent this, asingleinput queue can bemaintained
(Refer Figure 9.3(b)). Whenever, apartition becomesfree, the processthat fitsin
it can bechosen from theinput queue using some scheduling dgorithm.

24M 24M
Py —C)—C) [
22M 22M
Multiple
18M
i 18M
P, —Q input queues| P,
14M o 14M %/_/
O O Pr Single input queue
oM Operating 8M B Freememory
Operatin
system g/stemg [0 Used memory
0 0
(a) Separate Input Queues (b) Single Input Queue

Fig. 9.3 Memory Allocation in Fixed Partitions

Thefixed-partitioning techniqueiseasy toimplement and requireslessoverhead
but has some disadvantageswhich areasfollows:

- Thenumber of processesin memory depends on the number of partitions.
Thus, thedegree of multiprogrammingislimited.

- Thememory cannot be used efficiently in case of small-sized processes.

Note: The technique having fixed-partitionsis no longer in use.

Self-Instructional
178 Material

Variable Partitions Memory Management
Srategn&s

To overcomethe disadvantages of fixed-partitionstechnique, atechniquecalled

Multiprogramming with aVariable number of Tasks (MVT) isused. It isthe

generdization of thefixed partitionstechniquein which thepartitionscanvary in NOTES

number and size. Inthistechnique, theamount of memory alocated isexactly the

amount of memory aprocessrequires. Toimplement this, thetable maintained by

the operating system stores both the starting address and ending address of each
process.

Initially, when thereis no processin the memory, the whole memory is
availablefor allocation and isconsidered asasinglelarge partition of available
memory (ahole). Whenever aprocessrequestsfor the memory, the holelarge
enough to accommodate that processis allocated. The rest of the memory is
available to other processes. As soon as the process terminates, the memory
occupied by it isdeall ocated and can be used for other processes. Thus, at agiven
point of time, some parts of memory may be in use while others may be free
(Refer Figure 9.4(a)). Now to makefurther all ocations, the memory manager
must keep track of the free space in memory. For this, the memory manager
maintainsafree-storagelist that keepstrack of the unused part (holes of variable
szes) of memory. Thefree-storagelistisimplemented asalinked list whereeach
node containsthesize of the holeand theaddress of the next availablehole (Refer
Figure9.4 (b)).

20M
Py

18M 3 5 |-_—|—>|4 |-_—|—>NULL

16M

Ps Size of hole

14M
P

13M ®)

10M
Py

8M -
Operating
system

0

(b)

Fig. 9.4 Memory Map and Free-Storage List

Ingenera, at acertain point of time, therewill beaset of holesof varioussizes
dispersed inthememory. Asaresult, theremay bepossibility that thetotd available
memory islarge enough to accommodate thewaiting process. However, it cannot
beutilized asit isscattered. Thiswastage of thememory spaceiscalled external
fragmentation (also known aschecker boar ding) since, thewasted memory is

Self-Instructional
Material 179

Memory Management
Srategies

NOTES

Self-Instructional
180 Material

not apart of any partition. For example, if arequest for apartition of size 5M
arrives, it cannot be granted because no single partitionisavailablethat islarge
enough to satisfy the request (Refer Figure 9.4). However, the combined free
space can definitely satisfy therequest.

To get rid of thisproblem, it isdesirableto rel ocate (or shuffle) someor
al portionsof thememory in order to placeall thefree holestogether at oneend
of memory to make one large hole. Thistechnique of reforming the storageis
termed as compaction. Compaction resultsin the memory partitioned into two
contiguous blocks—one of used memory and another of free memory. Figure
9.5 shows the memory map after performing compaction. Compaction may
take place at the moment any node frees some memory or when arequest for
alocating memory fails provided the combined free space is enough to satisfy

therequest. Sinceitisexpensiveintermsof CPU time, itisrarely used.
24M

15M
Py

13M

1M Ps

P,

10M
Py

8M
Operating
system

Fig. 9.5 Memory After Compaction

Partition Selection Algorithms

Whenever a process arrives and there are various holes large enough to
accommodateit, the operating system may use one of thefollowing algorithmsto
select apartition for the process.

- Firgt Fit: Inthisagorithm, the operating system scansthefree-storagelist
and dlocatesthefirgt holethat islarge enough to accommodatethat process.
Thisadgorithmisfast because searchislittleascompared to other dgorithms.

- Best Fit: Inthisagorithm, the operating system scansthefree-storagelist
and alocatesthe smallest holewhose sizeislarger than or equal tothesize
of theprocess. Unlikefirst fit algorithm, it allocatesapartition that isclose
tothesizerequiredfor that process. It isdower thanthefirst fit dgorithmas
it hasto searchtheentirelist every time. Moreover, it leadsto morewastage
of memory asit resultsin thesmallest |eftover holesthat cannot beused to
satisfy thememory alocation request.

- Wor ¢t Fit: Inthisalgorithm, the operating system scansthefree-storagelist
and alocatesthelargest holeto that process. Unlike best fit, thisagorithm
resultsinthelargest | eftover holes. However, smulationindicatesthat worst
fit allocationisnot very effectivein reducing thewastage of memory.

Note: First fit and best fit are among the most popular algorithms for dynamic memory
allocation.

Example9.1: Consider thememory map givenin Figure 9.4, how would each of
thefirst fit, best fit and worst fit d gorithmsallocate memory to aprocess P of size
2M.

Solution: Accordingto thedifferent a gorithms, memory will bealocated to the
process P asshownin Figure 9.6.

24M 24M 24M
22M P
20M 20M 20M
Py P, P,
18M 18M 18M
P
16M 16M 16M
Ps P Ps
14M 14M 14M
P> PZ P2
13Mm 13M 13V
12M
10M P 10M 10N
P Py Py
8M - 8M - 8M -
Operating Operating Operating
gydem system system
0 0 0
(a) First Fit (b) Best Fit () Worst Fit

Fig. 9.6 Memory Allocation Using Different Algorithms
9.4.3 Relocation and Protection

In multi programming environment, multi ple processes are executed duetowhich
two problems can arise which arerel ocation and protection.

Relocation

From theearlier discussion, it isclear that different processesrun at different
partitions. Now, suppose a process containsan instruction to call aprocedure
at absolute address 5. If thisprocessis|oaded into apartition at address 10M,
thisinstruction will jump to absolute address 5 which isinside the operating
system. Instead, it isrequired to call memory address (10M+5). Similarly, if the
processisloaded into some other partition, say at address 20M, thenit should
call at memory address20M+5. Thisproblemisknown asrelocation problem.

Memory Management
Srategies

NOTES

Self-Instructional
Material 181

Memory Management
Srategies

NOTES

Self-Instructional
182 Material

Thisre ocation problem can be solved by equipping the system with ahardware
register called relocation register which containsthe starting address of the
partition into which the process is to be loaded. Whenever, an address is
generated during the execution of aprocess, the memory management unit adds
the content of the rel ocation register to the addressresulting in physica memory
address.

Example9.2: Consider thelogical addressof aningtructioninaprogramis 7632

and the content of rel ocation register is2500. To which location inthe memory
will thisaddress be mapped?

Solution: Here, Logica address= 7632
Content of relocationregister = 2500
Since, Physica address=Logica address+ Content of relocation register
Physical address= 7632 + 2500 = 10,132
Thus, thelogica address 7632 will be mapped to thelocation 10,132 in memory.

Protection

Using rel ocation register, the problem of rel ocation can be solved but thereisa
possibility that auser process may accessthe memory address of other processes
or the operating system. To protect the operating system from being accessed by
other processes and the processes from one another, another hardware register
caledlimit register isused. Thisregister holdsthe range of logical addresses.
Eachlogica addressof aprogram ischecked against thisregister to ensurethat it
does not attempt to access the memory address outside the allocated partition.
Figure 9.7 showsrel ocation and protection mechanism using rel ocation and limit
register.

Limit register

CPU logical address Physica address

Physica
5648 Memory

v

248

i MMU
Trap addressing error

Relocation register

Fig. 9.7 Relocation and Protection using Relocation and Limit Register

Memory Management
Srategies

Check Your Progress

1. Differentiate between physica andlogica address space.
2. How doyouimprovethe usageand the speed of the computer'sresponse? NOTES
3. What do you understand by interna fragmentation?

4. Definechecker boarding.

5. How dowedefinedifferent partition search algorithms?

9.5 NONCONTIGUOUS MEMORY ALLOCATION

In noncontiguous allocation approach, parts of a single process can occupy
noncontiguous physical addresses. In this section, we will discuss memory
management schemes based on noncontiguousall ocation.

9.5.1 Paging

In paging, the physical memory isdivided into fixed-sized blocks called page
framesandlogical memory isaso divided into fixed-size blockscalled pages
which are of samesize asthat of page frames. When aprocessisto be executed,
its pages can beloaded into any unalocated frames (not necessarily contiguous)
from the disk. Figure 9.8 shows two processes A and B with all their pages
loaded into thememory. Inthisfigure, the page sizeisof 4KB. However, some
systems support even larger page sizes such as 8KB, 4MB, and so on.
Nowadays, the pages sizes between 4K B and 8K B are used.

Logical memor
d Y qok-16K | Page3 . Page frames
aic12K | Page2 > 28K-32K
K- 8K Pagel] 24K 28K Physical memory
**K8K8
Page 0 -
K 0ax | P 20K -24K
Process A of Size 16K 16K -20K
12K- 16K
8K- 12K
4K-8K
Logical memory OK- 4K
8K-12K | Page2
4K-8K | Pagel
**KB8K8|
K 0-4K | P9e0

Process B of Size 12K
Fig. 9.8 Concept of Paging

Note: In real systems, the page size can vary from 512 bytesto 64 KB.

Self-Instructional
Material 183

Memory Management
Srategies

184

NOTES

Self-Instructional
Material

When the CPU generatesalogica address, itisdividedintotwo parts. A
page number (p) [high-order bits] and A page offset (d) [low-order bits] whered
specifiesthe addressof theinstruction within the pagep. Sincethelogicd address
isapower of 2, the page sizeisawayschosen asapower of 2 sothat thelogical
address can be converted easily into page number and page offset. To understand
this, consider the size of logical address spaceis2™ Now, if we choose apage
sizeof 2"(bytesor words), then nbitswill specify the page offset and mn bitswill
specify the page number.

Example 9.3: Consider asystem that generates|ogical addressof 16 bitsand
pagesizeis4K B. How many bitswould specify the page number and page of fset?

Solution: Here, thelogica addressisof 16 hits, that is, thesize of logica address
spaceis 2%,

Pagesizeis4KB, that is, 4 x 1024 bytes = 2*2 bytes

Thus, the page offset will beof 12 bitsand page number will beof (16 12)
=4bits.

Now let usseehow alogical addressistrandated into aphysical address.
In paging, addresstrandation is performed using amapping table, called page
table. The operating system maintains a page table for each process to keep
track of which pageframeisallocated to which page. It storesthe frame number
allocated to each page and the page number is used asindex to the pagetable
(Refer Figure9.9).

Page frames
7 28K-32K
Frame no
6 | Page3 | pgx-28K
12K-16K | Page3 ol s
ook | Pege? 5| Pagel | ook-24K
- 1|5 2
4K-8K | Pagel 2|1 16K -20K
LGISC 3 | Page0
K 0-aK | "% 3|6 ’ 12K- 16K
) K- 12K
Logical memory Page table 1| Page2 8
4K-8K
0
OK- 4K

Physical memory
Fig. 9.9 Page Table

When CPU generatesalogica address, that addressissenttoMMU. TheMMU
usesthe page number to find the corresponding page frame number in the page
table. That pageframe number isattached to the high-order end of the page of fset
toformthephys ca addressthat issent to thememory. Themechanism of trandation
of logical addressinto physica addressisshownin Figure9.10.

Pageno Physical memory Memory Managemgnt
Page Offset Srategies

AR |
6T [—

Y NOTES
Logical address Physica|Address
—
p| f
Page table

Fig. 9.10 Address Trandation in Paging

Note: Snce both the page and page frames are of same size, the offset within them are
identical, and need not be mapped.

Example9.4: Consider apaged memory system with eight pages of 8K B page
szeeach and 16 pageframesinmemory. Using thefollowing pagetable, compute
thephysical addressfor thelogical address 18325.

7 | 1010
6 | 0100
5 | 0000
4 | 0111
3| 1101
2 | 1011
1| 1110
0| o101
Page Table

Solution: Since, total number of pages= 8, that is, 2% and each pagesize=8KB,
that is, 2*3 bytes, thelogical addresswill be of 16 bits. Out of these 16 bits, the
three high-end order bits represent the page number and the 13 low-end order
bits represent offset within the page. In addition, there are 16, that is, 2* page
framesinmemory, thus, the physical addresswill be of 17 bits.

Givenlogica address= 18325 whichisequivaent to 0100011110010101.
Inthisaddress, page number = 010, that is, 2 and page offset = 0011110010101.
From the pagetableit isclear that the pagenumber 2 isin pageframe 1011.

Therefore, thephysica address=10110011110010101, whichisequivaent
to 92053.

Self-Instructional
Material 185

Memory Management
Srategies

186

NOTES

Self-Instructional
Material

Advantages

- Sincethe memory alocated isalwaysinfixed unit, any freeframe can be
alocated to aprocess. Thus, thereisno externa fragmentation.

Disadvantages

- Theremay be someinternal fragmentation. Toillustratethis, consider a
pagesizeisof 4KB and aprocessrequiresmemory of 8195 bytes, that is
2 page+ 3 bytes. Inthiscase, for only 3 bytes, an entireframeiswasted
resultingininterna fragmentation.

Hardware Implementation of Page Table

A pagetable can beimplemented in several ways. The simplest way isto use
registersto store the page table entriesindexed by page number. Though this
method isfaster and does not require any memory reference, itsdisadvantageis
that itisnot feasiblein case of large pagetableasregistersareexpensve. Moreover,
at every context switch, the page table needsto be changed whichinturnrequires
all theregistersto bereloaded. Thisdegradesthe performance.

Another way isto keep the entire pagetablein main memory and the pointer
to page table stored in aregister called Page-Table Base Register (PTBR).
Using thismethod, pagetabl e can be changed by rel oading only oneregiter, thus
reduces context switch timeto agreat extent. Thedisadvantage of thisschemeis
that it requires two memory references to access amemory location; first, to
access page table using PTBR to find the page frame number, and second, to
accessthedesired memory location. Thus, memory ngisdowed down by
afactor of two.

To overcomethis problem, the system can be equipped withaspecia hardware
device known as Tranglation Look-Aside Buffer (TLB) (or associative
memory). The TLB isinsdeMMU and containsalimited number of pagetable
entries. When CPU generatesalogica addressand presentsittotheMMU, itis
compared with the pagenumberspresentinthe TLB. If amatchisfoundin TLB
(called TL B hit), the corresponding page frame number isused to accessthe
physica memory. Incaseamatchisnot foundin TLB (caled TL B miss), memory
isreferenced for the pagetable. Further, this page number and the corresponding
framenumber areadded to the TL B so that next timeif thispageisrequired, it can
bereferenced quickly. Sincethesizeof TLB islimited sowhenitisfull, oneentry
needsto bereplaced. Figure9.11 showsthe mechanism of pagingusing TLB.

Page no Page Offset

N !

CPU g p d f d

__v_j A

Logica i
Address Physical|Address
Page no Frame no TLB hit

TLB
TLB miss
»p| f

Fig. 9.11 Paging with TLB

TLB can contain entriesfor morethan one process at the sametime, sothereisa
possibility that two processes map the same page number to different frames. To
resolvethisambiguity, aProcess Identifier (PID) can be added with each entry of
TLB. For each memory access, the PID present inthe TLB ismatched with the
valueinaspecia register that holdsthe PID of the currently executing process. If
it matches, the page number is searched to find the page frame number; otherwise
itistrestedasaTLB miss.

9.5.2 Segmentation

A user viewsaprogram asacollection of segmentssuch asmain program, routines,
variables, andsoon. All of thesesegmentsarevariablein Szeand their szevaries
during execution. Each segment isidentified by aname (or ssgment number) and
thee ementswithin asegment areidentified by their offset from thestarting of the
segment. Figure 9.12 showsthe user view of aprogram.

Memory Management
Srategies

NOTES

Self-Instructional
Material

187

Memory Management
Srategies

188

NOTES

Self-Instructional
Material

Segment 0 Segment 2 Sa;]ment 4
stack
main
program variables
ment 1
=g Segment 3

. constants
routine

Fig. 9.12 User View of a Program

Segmentation isamemory management schemethat implementsthe user view of
aprogram. In this scheme, the entirelogical address spaceisconsidered asa
collection of segmentswith each segment havinganumber and alength. Thelength
of asegment may range from 0 to some maximum value as specified by the
hardware and may a so changeduring the execution. The user specifieseachlogica
address consisting of asegment number (s) and an offset (d). Thisdifferentiates
segmentation from paginginwhich thedivision of logical addressinto page number
and pageoffset is performed by the hardware.

To keep track of each segment, a segment table is maintained by the
operating system (Refer Figure9.13). Each entry in the segment table consists of
twofidds: ssgment baseand segment limit. Thesegment basespecifiesthegarting
address of the segment in physical memory and the segment limit specifiesthe
length of the segment. The segment number isused asan index to the segment
table.

6900
base limit 6400 Segment 0
Segnr:::to Segment 2 Segment 4 o a0 =0 00 Segment 3
program Stack . 1| 4700 | 1100 az0ol8ment 1
variables 2 | 1600 | 1000 Segment 4
Segment 1 Segment 3 3400
constants 8 | 5800 600 2600
routine 4 | 3400 1300 1600 Segment 2
Segment table
Logical address space Physical momery

Fig. 9.13 Segment Table

When CPU generatesalogica address, that addressissenttoMMU. TheMMU
usesthe segment number of logical addressasanindex to thesegment table. The
offset iscompared with the segment limit and if it isgreater, invalid-addresserror
isgenerated. Otherwise, the offset isadded to the segment baseto form the physical

addressthat issent to the memory. Figure 9.14 showsthe hardwareto trand ate

logicd addressinto physical addressin segmentation.

Segment number

CPU

N\

'

S

Advantages

- Sinceasegment containsonetypeof object, each segment can havedifferent
typesof protection. For example, aprocedure can be specified as execute
only whereasachar type array can be specified asread only.

- Itadlowssharing of dataor code between severa processes. For example,
a common function or shared library can be shared between various
processes. Instead of having themin address space of every process, they
can be put in one segment and that segment can be shared.

> Jimit | base
Segment table
Offset
d

L
Logical v
address

Yes

Physical memory

Y
N
\ 4

lm

Addressing error

Fig. 9.14 Segmentation Hardware

Memory Management
Srategies

NOTES

Self-Instructional
Material 189

Memory Management
Srategies

190

NOTES

Self-Instructional
Material

Example 9.5: Using thefollowing segment table, computethe physical address
for thelogica addressconsisting of segment and offset asgiven below.

Base Limit

0| 5432 350

11 115 100

2| 2200 780

3| 4235 1100

41 1650 400

Segment Table
(a) Segment 2 and offset 247
(b) Segment 4 and offset 439

Solution:
(@) Here, offset =247 and segmentis?2
Itisclear from the segment tablethat limit of segment 2=780and
segment base = 2200
Since, the offset islessthan the segment limit, physical addressis
computed as
physical address = offset + segment base

=247 + 2200 = 2447

(b) Here, offset =439 and segmentis4
Itisclear from the segment tablethat limit of segment 4=400and
segment base = 1650
Since, theoffset isgreeter than the segment limit, invalid-addresserror isgenerated.

9.5.3 Segmentation with Paging

Theideabehind the segmentation with paging isto combinethe advantages of
both paging, (such asuniform page size) and segmentation, (such asprotection
and sharing) together into asinglescheme. Inthisscheme, each segment isdivided
into anumber of pages. To keep track of these pages, apagetableismaintained
for each segment. The segment offset inthelogical address (comprising segment
number and offset) isfurther divided into apage number and apage offset. Each
entry of segment tabl e contai ns the segment base, segment limit and one more
entry that contains the address of the segment’s page table.

Thelogica addresscongstsof threeparts: Segment number (S), Pagenumber
(p) and Page offset (d). Whenever, addresstrandationisto be performed, firstly,
the MMU uses the segment number as an index to segment table to find the
address of pagetable. Then the page number of logical addressisattached to the

high-order end of the page table address and used as an index to page tableto
find the pagetable entry. Finally, the physi cal addressisformed by attaching the
frame number obtained from the page tabl e entry to the high-order end of the
page offsat. Figure 9.15 showsthe addresstrand ation in segmentationwith paging
scheme.

Physica memory

\

Address of page table

Ha=r
1

Page table

Fig. 9.15 Segmentation with Paging

9.6 SWAPPING

In multiprogramming, amemory management scheme called swapping can be
used toincreasethe CPU utilization. Theprocessof bringing aprocessto memory
and after running for awhile, temporarily copyingit to disk isknown asswapping.
Figure 9.16 shows the swapping process. The decision of the process to be
swappedin and swapped out ismade by the CPU schedul er. For example, consider
amultiprogramming environment with priority based scheduling agorithm. When
aprocess of high-priority enters the input queue, a process of low priority is
swapped out so that the process of high priority can beloaded and executed. On
thetermination of this process, the process of low priority isswapped back inthe
memory to continueitsexecution.

Swapped in
- T D
P, Swapped out A m
Operating
system

Fig. 9.16 Swapping

Memory Management
Srategies

NOTES

Self-Instructional
Material 191

Memory Management
Srategies

Check Your Progress

6. Statetheformulation for thesize of logica address spaceand pagesize.
NOTES 7. Writethe advantages and di sadvantages of paging?

8. How do you define each entry in the table segmentation?

9. Definethethree mgjor partsof logical address.
10. What ismeant by swapping?

9.7 VIRTUAL MEMORY

Virtual memory isatechniquethat allowsexecution of aprogram that isbigger
than the physica memory of thecomputer system. In thistechnique, theoperating
system|oads only those partsof programin memory that are currently needed for
the execution of the process. Therest part iskept on thedisk and isloaded into
the memory only when needed. For example, a64M program can runon a32M
system by loading the 32M inthe memory at aninstant; the parts of the program
are swapped between the memory and the disk as needed (Refer Figure 9.17).

7~ 60M-64M | Pagen A
** K 8K 8K 28M-32M

24M-28M

: \ 20M-24M
—
: 16M -20M >

12m-16m | P23 12M- 16M
gM-12m | P0°2 8M- 12M
4M- 8 Pagel Memory Map | 4M-8M
e I oy
Virtual Memory Physical Memory

Fig. 9.17 Virtual Memory and Physical Memory

Note: In virtual memory systems, the logical addressisreferred to as virtual address and
logical address spaceisreferred to as virtual address space.

9.8 VIRTUAL MEMORY MANAGEMENT: DEMAND
PAGING

Demand pagingisasystem inwhich apageisloaded into thememory only when
it isneeded during program execution. Pagesthat are never accessed are never
|oaded into thememory.

Self-Instructional
192 Material

A demand paging system combinesthefeaturesof paging with swapping.
To facilitate swapping, the entire virtual address space of aprocessis stored
contiguoudy on asecondary storage device (usudly, adisk). Whenever, aprocess
isto beexecuted, an areaon secondary storagedeviceisalocated to it onwhich
itspagesare copied. Theareaisknown asswap space of the process. During the
execution of aprocess, whenever apageisrequired, itisloaded into themain
memory from the swap space. Similarly, when aprocessisto beremoved from
main memory;, itiswritten back into the swap spaceif it hasbeen modified.

Other than swap space, someform of hardware support isa so needed to
differentiatethe pagesthat arein memory from the oneson disk. For this, only an
additiond bit valid ismaintained in each pagetable entry to indicatewhether the
pageisinmemory. If apageisvdid (that is, it existsinthe virtua address space of
the process) and in memory, theassociated valid bit isset to 1, otherwiseit is set
to 0. Figure 9.18 showsthe page tablein demand paging system.

7 28M-32M
Frame no Valid bit 6
24M-28M
12m-16M | Page3 0 0
— 5 20M-24M
8M- 12M 1 4 1 4 | Pagel
aM-8Mm | Pagel 5 0 16M-20M
B8 Page0 ° 12M- 16M
K 0-4M 3|2 1 2 | Page3
Logical memory 8M- 12M
Page table 1
4M-8M
0
0-4M
Physical memory

Fig. 9.18 Page Table in Demand Paging System

Whenever, aprocessrequestsfor apage, thevirtua addressissenttoMMU. The
MMU checksthevalid bit in the pagetable entry of that page. If thevalidbitis1
(that is, therequested pageisinmemory), it isaccessed asin paging. Otherwise,
theMMU raisesaninterrupt called pagefault or amissing pageinterrupt and
the control ispassed to the pagefault routinein the operating system.

To handlethe pagefault, the pagefault routinefirst of adl checkswhether the
virtual addressfor thedesired pageisvalid fromits PCB stored in the process
table. If itisinvaid, it terminatesthe processgiving error. Otherwise, it takesthe
following steps.

1. Locatesfor afree pageframein memory and allocatesit to the process.
2. Swapsthedesired pageinto thisallocated pageframe.

3. Updates the process table and page table to indicate that the pageisin
memory.

Memory Management

Srategies

NOTES

Self-Instructional
Material

193

Memory Management
Srategies

194

NOTES

Self-Instructional
Material

After performing these steps, the CPU restartsfrom theinstruction that it
|eft off dueto the pagefault (Refer Figure 9.19).

CPU Logical addr

-

Page fault

Secondary
Page table Storage

A 4

Operating
@ Update page table System

Swap in the pagg
in free frame

Check for free frame

A

Physica Memory
Fig. 9.19 Handling a Page Fault

Note: In demand paging, the process of loading a page in memory is known as page-in
operation instead of swap-in. It is because the whole process is not loaded; only some
pages are loaded into the memory.

Advantages
- It reduces the swap time since only the required pages are swapped in
instead of thewhol e process.

- Itincreasesthe degree of multiprogramming by reducing the amount of
physica memory required for aprocess.

- Itminimizestheinitial disk overhead asnot dl pagesaretobereadinitialy.
- It does not need extrahardware support.

9.9 COPY-ON-WRITE

A process may need to create several processes during its execution and the
parent and child processes havetheir own distinct address spaces. If the newly
created processisthe duplicate of the parent process, it will contain same pages
initsaddressspace asthat of parent. However, if thenewly created process need
toload another program initsmemory space, immediately after creation, thenthe
copying of parent’s address space may be unnecessary. To avoid copying, a
technique made available by virtual memory called copy-on-write can be
employed.

Inthistechnique, initidly, parent and child processesaredlowed to sharethe
same pages and these shared pages are marked as copy-on-write pages. Now, if
either processattemptsto write on ashared page, acopy of that pageiscreated for
that process. Note that only the pagesthat can be modified (for example, pages
containing data) are marked as copy-on-write pageswhilethe pagesthat cannot be
modified (for example, pages contai ning executable code) areshared between parent
and child processes.

Toimplement this, abit isassociated in pagetable entry of each shared
pagetoindicatethat it isacopy-on-write page (Refer Figure 9.20). Whenever,
either process say, child process tries to modify apage, the operating system
createsacopy of that page, mapsit to the address space of the child processand
turns off the copy-on-write bit. Now, the child process can modify the copied
page without affecting the page of the parent process. Thus, copy-on-write
technique makesthe process creation faster and conservesthe memory.

/> Pagel
Process P,

/ Pagel
Process P; A

Copy of
Page 1 " page
Page 0
Page 0 Process P,
Process P,
Physical memory Physical memory
(a) Before Process P,Modifies Page 1 (b) After Process P, Modifies Page 1

Fig 9.20 Implementing Copy-On-Write

Note: Anumber of operating systemsincluding Windows XP, Linux and Solaris support
the use of copy-on-write technique.

9.10 PAGE REPLACEMENT

Asdated earlier, when pagefault occurs, pagefault routinelocatesfor afree page
framein memory and alocatesit to the process. However, thereisapossibility
that thememory isfull, thatis, no freeframeisavallablefor alocation. Inthat case,
the operating system hasto evict apage from the memory to make spacefor the
desired pageto be swapped in. The pageto beevicted will bewritten on thedisk
depending on whether it hasbeen modified or not. If the page has been modified
whileinthememory, itisrewrittento the disk; otherwiseno rewriteisneeded.

To keep track whether the page has been modified, aM odified (M) bit
(also known as dirty hit) is added to each page table entry. Thisbit indicates
whether the page has been modified. When apageisfirst |oaded into the memory,

thisbitiscleared. It isset by the hardware when any word or byteinthepageis

Memory Management
Srategies

NOTES

Self-Instructional
Material

195

Memory Management
Srategies

NOTES

Self-Instructional
196 Material

writteninto. At thetime of page replacement, if dirty bit for aselected pageis
cleared, itimpliesthat the page has not been modified sinceit wasloaded into the
memory. The pageframeiswritten back to the swap spaceonly if dirty bit isset.

The system can select apage frameat random and replaceit by the new
page. However, if thereplaced pageisfrequently accessed, then another page
fault would occur when the replaced pageisaccessed again resulting in degradation
of system performance. Thus, there must be some policy to select apageto be
evicted. For this, therearevarious page repl acement a gorithms. These replacement
algorithms can be eval uated by determining the number of pagefaultsusing a
referencestring. Areferencestringisan ordered list of memory references made
by aprocess. It can be generated by arandom-number generator or recording
the actual memory references made by an executing program. Toillustratethe
page replacement algorithms, consider thereference string asshownin Figure
9.21 for the memory with three page frames. For simplicity, instead of actual
memory references, we have considered only the page numbers.

50 5 3 5 2 5 0 1 0 7 3

Fig 9.21 Sructure of the Reference String
9.10.1 First-In First-Out Page Replacement

TheFirst-In, First-Out (FIFO) isthe s mplest page replacement a gorithm. Asthe
namesuggests, thefirst pageloaded into thememory isthefirst pageto berepl aced.
That is, the pageisreplacedintheorder inwhichit isloaded into the memory.

Toillugtratethe FIFO replacement a gorithm, consider our examplereference
gringshowninFgure9.22. Assumingthat initidly, dl thethreeframesareempty,
thefirst two references madeto page 5 and 0 and cause page faults. Asaresult,
they are swapped in memory. Thethird reference madeto page 5 does not cause
pagefault asit isaready in memory. The next reference madeto page 3 causesa
page fault and that pageisbrought in memory. Thereferenceto page 2 causesa
pagefault which resultsin thereplacement of page5 asitisthe ol dest page. Now,
theoldest pageisO, soreference madeto page 5 will replace page0. Thisprocess
continuesuntil al the pagesof referencestring areaccessed. Itisclear from Figure
9.22 that there are nine pagefauilts.

5 0 5 3 5 2 5 0 1 0 7 3 | Referencesring

£EEl

3 Swap-in page

IIIIIII A

Swap-out page

Fig 9.22 FIFO Replacement Algorithm

Toimplement thisa gorithm, each pagetableentry includesthetime (caled
swap-in time) when the page was swapped i n the memory. When apageisto be
replaced, the pagewiththeearliest svap-intimeisreplaced. Alternatively, aFIFO
gueue can be created to keep track of dl the pagesinthememory withtheearliest
one at thefront and the recent at the rear of the queue. At thetimeof pagefaullt,

thepageat thefront of the queueisremoved and the newly arrived pageisadded
to therear of the queue.

TheFIFO pagereplacement algorithmiseasier toimplement as compared
to al other replacement algorithms. However, itisrarely used asitisnot very
efficient. Sinceit doesnot consider the pattern of the usage of apage, afrequently
used pageframemay bereplaced resultingin more pagefaults. Moreover, it suffers
from Belady’s anomaly—a situation in which increasing the number of page
frameswould result in more pagefaults. Toillustratethis, consider thereference
string containing five pages, numbered from 2to 6 (Refer Figure9.23). Fromthis
figure, itisclear that with three pageframes, atotal of nine pagefaultsoccur. On
the other hand, with four pageframes, atotal of ten pagefaults occur.

2 3 4 5 2 3 6 2 3 4 5 6 Reference gring
2 3 4 5 2 3 6 - - 4 5 - Swa-inpage
2| 2|| 2|| s S BIBRIRIBIBIE
311 3| 3 2| 2 2 4 Page frames
all 4 3| 3 3 5
2 3 4 5 . - 2 3 - Swap-out page

@) FIFOwith Three Page Frames

2 3 4 5 2 3 6 2 3 4 5 6 Reference string

2 3 4 5 - 6 2 3 4 5 6 Swapinpage

2| 2 _2 2 2 _2 _6 6|l 6] 6| 5|| 5

- || 3 _3 3|l 3 _3 _3 211 2] 2|1 2|| 6 Page frames

- [4] 4(| 4 [4] _4 4l 3(] 3| 3|| 3
HEBIEEE EE R R

- - 2 3 4 5 6 2 Swapoutpage

(b) FIFOwith Four Page Frames

Fig. 9.23 Belady’s Anomaly

Memory Management
Srategies

NOTES

Self-Instructional
Material 197

Memory Management 9.10.2 Optimal Page Replacement
Strategies

The Optimal Page Replacement (OPT) algorithm is the best possible page

replacement a gorithm. The basicideabehind thisalgorithm isthat whenever a
NOTES page fault occurs, some pages arein memory; out of these pages, onewill be
referenced at the next instruction while other pages may not be referenced until
the execution of certain number of instructions. In case of page replacement, the
pagethat isreferenced in last will bereplaced. That is, the pageto bereferenced
inthemost distant futureisreplaced. For this, each page can belabelledinthe
memory with the number of instructions to be executed before that page is
referenced for thefirst time. The pagewith the highest |abel isreplaced fromthe
memoary.

Toillustratethisagorithm, consider our examplereferencestring (Refer
Figure9.21). Like FIFO, thefirst two references made to pages 5 and O cause
pagefaults. Asaresult, they are swapped into the memory. Thethird reference
madeto page 5 does not cause pagefault asitisaready inmemory. Thereference
madeto page 3 causes apagefault and thusis swapped into memory. However,
thereference madeto page 2 replaces page 3 because page 3 isrequired at the
last instruction whereas pages 5 and O arerequired at the next instruction. The
page faultsand the pages swapped-in and swapped-out for all the pagereferences
areshowninFigure9.24. Thisa gorithm causes seven pagefaullts.

5 0 5 3 5 2 5 0 1 0 7 3 | Referencestring

5 0 - 3

iﬂaa

3 Swap-in page

I I } Page frames

Swap-out page

| o] o] | o
s

Fig 9.24 Optimal Page Replacement Algorithm

The advantage of thisagorithmisthat it causesthelowest number of pagefaults
as compared to other algorithms. The disadvantage of thisalgorithmisthat its
implementation requires prior knowledge of which pagewill bereferenced next.
Thoughthisagorithmisnot usedin systemspracticaly, it isused asthe basisfor
comparing performanceof other agorithms.

Note: To implement OPT, a program can be executed on a smulator and all the page
references are recorded. Using the page reference records obtained during first run, it can
be implemented at second run.

9.10.3 Least Recently Used Page Replacement

The Least Recently Used (LRU) agorithmisan approximation to the optimal
agorithm. Unlikeoptima agorithm, it usestherecent past behaviour of theprogram

Self-Instructional
198 Material

to predict the near future. Itisbased on theassumption that the pagethat hasbeen
used in the last few instructions will probably be referenced in the next few
instructions. Thus, it replacesthe pagethat has not been referenced for thelongest
time.

Consider our examplereferencestring (Refer Figure9.21). Asaresult of
thisagorithm, the page faults and the pages swapped-in and swapped-out for all
the pagereferencesare shownin Figure 9.25. Upto fivereferences, pagefaults
aresameasthat of optimal a gorithm. When areferenceis madeto page 2, page
Oisreplaced asit wasleast recently used. However, after page5, itisbeing used
againleadingto apagefault. Regardless of this, thenumber of pagefaultsiseight
whichislessthanin caseof FIFO.

5 0 5 3 5 2 5 0 1 0 7 3 |Referencestring

Fig 9.25 LRU Page Replacement Algorithm

Swap-in page

IIII I;L A

1 Swap-out page

Oneway toimplement LRU ismaintaining alinked list of al the pagesinthe
memory; the most recently used pageisat the head and theleast recently used
pageisat thetail of thelist. Whenever apageisto bereplaced, itisdeleted from
thetail of thelinked list and the new pageisinserted at the head of thelinked list.
The problem with thisimplementationisthat it requiresupdating thelist at every
page reference despite of whether pagefault occursor not. Itisbecausewhenever
apagein memory isreferenced, being themost recent page, itisremoved fromits
current position andinserted at the head of thelinked list. Thisresultsin extra
overhead.

Alternatively, thehardware can be equipped with acounter. Thiscounter is
incremented by oneafter each ingtruction. The pagetable hasafieldto storethe
value of the counter. Whenever, apageisreferenced, the current value of the
counter iscopied to that field in the page table entry for that page. Whenever, a
pageisto bereplaced, thisa gorithm searchesthe pagetablefor theentry having
thelowest counter val ue (meanstheleast recently used page) and replacesthat
page.

Clearly, it hasless pagefaults as compared to FIFO a gorithm. Moreover,
it does not suffer from the Belady’s anomaly. Thus, it is better than FIFO algorithm
and isused in many systems. The disadvantage of thisalgorithmisthat itistime
consumingwhenimplemented usinglinked list. Otherwise, it needsextrahardware
support for itsimplementation.

Memory Management
Srategies

NOTES

Self-Instructional
Material 199

Memory Management
Srategies

200

NOTES

Self-Instructional
Material

Note: Both the optimal and LRU algorithms belong to a special class of page replacement
algorithms called stack algorithms that never exhibit Belady’s anomaly.

9.10.4 The Second Chance Page Replacement

The second chance page replacement a gorithm (sometimes also referred to as
clock algorithm) isarefinement over FIFO agorithm. It replacesthe pagethat is
both the ol dest aswell asunused instead of the ol dest page that may be heavily
used. To keep track of the usage of the page, it usestheReferencebit (R) which
Isassociated with each page. Thisbit indicateswhether the reference has been
madeto thepagewhileitisin memory. It isset whenever apageisaccessed for
either reading or writing. If thishitisclear for apage that meansthispageisnot
being used.

Whenever, apageisto bereplaced, thisalgorithm usesthe FIFO algorithm to
find the oldest page and inspectsitsr ef er ence bit. If thisbitisclear, thepageis
both the oldest and unused and thus, replaced. Otherwise, the second chanceis
giventothispageandther ef er ence hit of thispageiscleared anditsload time
isset to the current time. Then the algorithm movesto the next oldest page using
FIFO agorithm. Thisprocess continuesuntil apageisfound whoser ef er ence
bitisclear. If ther ef er ence bit of all the pagesisset (that is, all the pagesare
referenced), then thisalgorithm will proceed aspure FIFO.

Thisalgorithmisimplemented using acircular linked list and apointer that
pointsto the next victim page. Whenever apageisto bereplaced, thelististraversed
until apagewhosereferencebitisclear isfound. Whiletraversing, ther ef er ence
bit of each examined pageiscleared. When apagewhoser ef er ence hitisclear
isfound, that pageisreplaced with the new page and pointer isadvanced to the next
page. For example, consider our examplereferencestringwithr ef er ence bits
shown in Figure 9.26. The algorithm starts with the page 5, say at timet = 18.
Since, ther ef er ence bit of thispageisset, itsr ef er ence bitiscleared and
timeisreset to the current system timeasthough it hasjust arrived in the memory.
The pointer isadvanced to the next pagethat ispage 0. Ther ef er ence bit of this
pageisclear, soitisreplaced by the new page. The pointer isadvanced to the page
3whichwill bethe starting point for next invocation of thisal gorithm.

Victim page

l E IEI E Reference bits
— LT P L Pl PPl

@

Load time

Victim page

IE' lIE IE' Iz' Reference bits
— 5] o o] o 3] P 2| o 1] o 7] o
18 2 6 9 - i
(b)
Fig 9.26 The Second Chance (Clock) Page Replacement Algorithm

Load time

9.10.5 Counting-Based Page Replacement Algorithm Memory Mag?%f';fg

Other than the page replacement a gorithms discussed earlier, there are several
other algorithms. Some of them keep record of how often each page has been
referenced by associ ating acounter with each page. Initidly, theva ueof thiscounter NOTES
isO, whichisincremented every timewhen areferenceto that pageismade. That
is, the counter countsthe number of referencesthat have been madeto each page.
A pagewiththehighest value of the counter isheavily used whilefor apagewith
thelowest vaue of counter, therearefollowing interpretations:

- That pageisleast frequently used.
- That page has been just brought in and isyet to be used

Thedgorithm based onthefirst interpretationisknown asL east Frequently
Used (L FU) page-replacement agorithm. Inthisa gorithm, when apageisto be
replaced, the pagewith lowest va ue of counter ischosenfor replacement. Clearly,
the pagethat isheavily used isnot replaced. The problem with thisalgorithm
ariseswhen thereisapagethat was used heavily initially, but afterwards never
used again. For example, inamultipass compiler, some pagesare used heavily
during pass 1, after that pass, they may not berequired. Still, these pageswill not
bereplaced asthey have high value of counter. Thus, thisa gorithm may replace
useful pagesinstead of pagesthat arenot in use. Theagorithm that isbased onthe
second interpretation is caled the Most Frequently Used (MFU) page-
replacement dgorithm.

Both these d gorithmsare not commonly used, astheir implementationis
expensive. Moreover, they do not approximate the OPT page replacement
agorithm.

Check Your Progress

11. What isthesgnificanceof virtua memory?

12. How dowe handlethe pagefault?

13. What aretheadvantagesof virtua memory management?

14. Definetheusage of copy-on-writetechnique.

15. What do you understand by reference stringin pagereplacement technique?

16. Explain the difference between the FIFO, LRU and Optimal page
replacement dgorithms.

17. DefineLFU and MFU pagereplacement a gorithms.

Self-Instructional
Material 201

Memory Management
Srategies

202

NOTES

Self-Instructional
Material

9.11 ANSWERS TO CHECK YOUR PROGRESS

QUESTIONS

. Whenever, aprogram is brought into the main memory for execution, it

occupies certain number of memory locations. The set of al physical
addresses used by the program isknown asphysical address space.

Therange of addressesthat user programs can useissystem-defined and
the set of all logical addresses used by a user program is known asits
logical address space.

. Toimprove utilization of the CPU and the speed of the computer’s response

toitsusers, the system kegpssevera processesin memory, that is, several
processes share memory. Dueto the sharing of memory, thereisneed of
memory management. Therearevarious strategiesthat are used to manage
memory. All these strategiesall ocate memory to the processesusing either
of following two approaches.

- Contiguousmemory allocation.

- Non-contiguous memory alocation.

. Any processregardlessof how smdl itis, occupiesan entirepartition which

leadsto thewastage of memory within the partition. Thisphenomenonwhich
resultsin the wastage of memory within the partition is called internal

fragmentation. For example, loading aprocess of size4M-nbytesintoa
partition of size4M (where, M stands for Megabytes) wouldresultina
wasted space of n byteswithin the partition.

. Ingenerd, at acertain point of time, therewill beaset of holesof various

sizesdispersed inthememory. Asaresult, theremay be possibility that the
total availablememory islarge enough to accommodatethewaiting process.
However, it cannot be utilized asit isscattered. Thiswastage of thememory
spaceiscalled external fragmentation (al so known as checkerboarding)
since, thewasted memory isnot apart of any partition.

. Whenever aprocess arrives and there are various holeslarge enough to

accommodateit, theoperating sysslem may useoneof thefollowing dgorithms
to select apartition for the process.

First Fit: Inthisagorithm, the operating system scansthefree-storage
list and dlocatesthefirst holethat islarge enough to accommodate that
process. Thisalgorithmisfast because searchislittle ascompared to
other dgorithms.

Best Fit: Inthisalgorithm, the operating system scansthefree-storage
list and dlocatesthe smallest holewhosesizeislarger than or equal to
thesizeof the process. Unlikefirst fit algorithm, it all ocatesapartition
that isclosetothe sizerequired for that process. It issower than the
first fit dgorithm asit hasto search theentirelist every time. Moreover,

6.

10.

11.

12.

it leadsto morewastage of memory asit resultsinthe smallest leftover
holesthat cannot be used to satisfy the memory alocation request.

Worst Fit: Inthisagorithm, the operating system scansthefree-storage
list and allocatesthe largest holeto that process. Unlike best fit, this
algorithm resultsin thelargest leftover holes. However, simulation
indicatesthat worst fit allocationisnot very effectivein reducing the
wastage of memory.

Tounderstand this, consider thesize of logical addressspaceis2™. Now, if
we choose apagesize of 2"(bytesor words), then n bitswill specify the
page offset and mn bitswill specify the page number.

. Advantages

Sincethememory alocated isawaysin fixed unit, any freeframecan
bedlocated to aprocess. Thus, thereisno externd fragmentation.

Disadvantages

Theremay be someinterna fragmentation. Toillustratethis, consider a
pagesizeisof 4KB and aprocessrequires memory of 8195 bytes, that
is2 page + 3 bytes. In this case, for only 3 bytes, an entire frameis
wasted resultingininterna fragmentation.

. Each entry in the segment table consists of two fields: segment baseand

segment limit. The segment base pecifiesthestarting address of the segment
in physica memory and the segment limit specifiesthelength of the segment.
The segment number isused asan index to the segment table.

. Thelogicd addresscongstsof threeparts: Segment number (S), Pagenumber

(p) and Page offset (d).

The process of bringing aprocessto memory and after runningfor awhile,
temporarily copyingit to disk isknown as swapping.

Virtual memory isatechniquethat allows execution of aprogramthat is
bigger than the physical memory of the computer system. Inthistechnique,
the operating system | oads only those partsof program in memory that are
currently needed for the execution of the process. Therest partiskept on
thedisk andisloaded into the memory only when needed. For example, a
64M program canrun on a32M system by loading the 32M inthe memory
at an instant; the parts of the program are swapped between the memory
and thedisk as needed.

Whenever, a process requests for a page, the virtual addressis sent to
MMU. TheMMU checksthevalid bit in the pagetable entry of that page.
If thevaidbitis1 (thatis, therequested pageisin memory), it isaccessed
asin paging. Otherwise, theMMU raisesaninterrupt called pagefault or a
missing pageinterrupt and the control ispassed to the pagefault routinein
theoperating system.

Memory Management
Srategies

NOTES

Self-Instructional
Material

203

Memory Management
Srategies

NOTES

Self-Instructional
204 Material

13.

14.

15.

16.

17.

Advantages

It reducesthe swap time sinceonly the required pages are swapped in
instead of thewhol e process.

It increasesthe degree of multiprogramming by reducing the amount of
physical memory required for aprocess.

It minimizestheinitial disk overhead asnot all pagesareto beread

initialy.

It does not need extra hardware support.
To avoid copying, atechnique made available by virtual memory called
copy-on-write can beemployed. Inthistechnique, initidly, parent and child
processes are allowed to share the same pages and these shared pagesare
marked ascopy-on-write pages. Now, if either process attemptstowriteon
ashared page, acopy of that pageis created for that process.

A referencedringisan ordered list of memory referencesmadeby aprocess.
It can be generated by arandom-number generator or recording the actua
memory references made by an executing program.

TheFirgt-In, Firgt-Out (FIFO) isthe s mplest page replacement algorithm.
Asthenamesuggests, thefirgt pageloaded into thememory isthefirst page
to bereplaced. That is, the pageisreplaced in the order in whichitis
|oaded into thememory.

The Optimal Page Replacement (OPT) dgorithmisthebest possible page
replacement agorithm. Thebasicideabehind thisa gorithmisthat whenever
apagefault occurs, some pagesarein memory; out of these pages, onewill
bereferenced a the next instructionwhileother pagesmay not bereferenced
until theexecution of certain number of ingtructions.

TheLeast Recently Used (LRU) dgorithm isan gpproximeation to theoptimal
agorithm. Unlikeoptima agorithm, it usestherecent past behaviour of the
program to predict the near future. It isbased on the assumption that the
pagethat hasbeen usedinthelast few ingructionswill probably bereferenced
inthe next few instructions. Thus, it replacesthe page that has not been
referenced for thelongest time.

A pagewith thehighest value of the counter isheavily used whilefor apage
withthelowest valueof counter, therearefollowing interpretations:

- That pageisleast frequently used.
- That page hasbeen just brought in and isyet to be used

Thedgorithm based onthefirgt interpretationisknown asLeast Frequently
Used (LFU) page-replacement dgorithm. Inthisa gorithm, whenapageis
to be replaced, the page with lowest value of counter is chosen for
replacement. Clearly, the page that isheavily used isnot replaced.

Thealgorithm that i sbased on the second interpretation iscalled the M ost Memory Magag?mnt
Frequently Used (MFU) page-repl acement a gorithm. rereies

Both these d gorithmsare not commonly used, astheir implementationis
expensive. Moreover, they do not approximatethe OPT page replacement

agorithm. NOTES

9.12 SUMMARY

- Many systemsallow multiple processestoresdeinthemanmemory at the
sametime, toincreasethe CPU utilization. It isthejob of memory manager,
apart of the operating system, to manage memory between these processes
inanefficient way.

- Every byteinthememory has aspecific addressthat may rangefrom Oto
some maximum va ue asdefined by the hardware. Thisaddressisknown
asphysical address.

- A program is compiled to run starting from some fixed address and
accordingly al thevariables and procedures used in the source program
are assigned some specific addressknown aslogical address.

- The mapping from addresses associated with a program to memory
addressesisknown as address binding. The addresses binding can take
placeat compilationtime, load timeor runtime.

- For managing the memory, the memory manager may use onestrategy from
anumber of available memory management strategies.

- All the memory management strategies all ocate memory to the processes
using either of two approaches. contiguous memory allocation or non-
contiguous memory alocetion.

- In contiguous memory allocation, each process is alocated a single
contiguouspart of the memory. Thedifferent memory management schemes
that are based on this approach are single partition and multiple partitions.

- Inthesingle partition technique, main memory ispartitioned into two parts.
One of them is permanently allocated to the operating system whilethe
other part isallocated to the user process.

- There are two alternatives for multiple partition technique—equal-sized
partitionsand unequal -sized partitions.

- In equal-sized partitions technique, any process can beloaded into any
partition. Regardless of how small aprocessis, the processoccupiesan
entire partition which leadsto thewastage of memory withinthe partition.
This phenomenon, which results in the wastage of memory within the
partition, iscalled interna fragmentation.

Self-Instructional
Material 205

Memory Management
Srategies

NOTES

Self-Instructional
206 Material

- Inunequal-sized partition, whenever aprocessarrives, itisplaced into the

input queue of the smallest partition large enough to hold it. When this
partition becomesfree, it isallocated to the process.

- MVT (Multiprogramming with a Variable number of Tasks) is the

generdization of thefixed partitionstechniqueinwhich the partitions can
vary innumber and size. Inthistechnique, theamount of memory allocated
isexactly theamount of memory aprocessrequires.

- InMVT, thewastage of thememory spaceiscalled externa fragmentation

(also known ascheckerboarding) sincethewasted memory isnot apart of
any partition.

- Whenever aprocessarrives and there are various holes large enough to

accommodateit, the operating system may use one of the algorithmsto
select apartition for the process. first fit, best fit and worst fit.

- Inmultiprogramming environment, multiple processes areexecuted dueto

which two problemscan arisewhich arerel ocation and protection.

- Therelocation problem can be solved by equipping the system with a

hardware register called rel ocation register which containsthe starting
address of the partition into which the processisto beloaded.

- To protect the operating system from access by other processes and the

processesfrom oneanother, another hardwareregister called limit register
isused.

- Innoncontiguousallocation approach, partsof asingle process can occupy

noncontiguous physical addresses.

- Paging and segmentati on are the memory management techniques based

on the noncontiguous al ocation approach.

- In paging, the physical memory isdivided into fixed-sized blockscalled

pageframesand logical memory isalsodivided into fixed-szeblockscaled
pageswhich areof samesizeasthat of pageframes. Theaddresstrandation
isperformed using amapping table, called pagetable.

- Segmentation isamemory management schemethat implementsthe user

view of a program. In this scheme, the entire logical address spaceis
cons dered asacollection of segmentswith each segment havinganumber
and alength. To keep track of each segment, asegment tableismaintained
by the operating system.

- Theideabehind the segmentation with paging isto combinethe advantages

of both paging, (such as uniform page size) and segmentation, (such as
protection and sharing) together into asingle scheme. Inthisscheme, each
segment isdivided into number of pages. To keep track of these pages, a
pagetableismaintained for each segment.

- A memory management scheme called swapping can beused to increase

the CPU utilization. The processof bringing aprocessto memory and after
running for awhile, temporarily copyingit to disk isknown as swapping.

- Overlaying alowsaprocessto executeirrespective of the system having Memory Mag?%?;ﬁg
insufficient physical memory. The programmer splitsaprograminto smaler
partscalled overlaysin such away that no two overlaysarerequired to be
inmain memory at the sametime. An overlay isloaded into memory only
whenitis needed. NOTES

- Virtual memory isatechniquethat allows execution of aprogramthat is
bigger than the physical memory of the computer system. It can be
implemented by demand paging or demand segmentation.

- Indemand paging, apageisloaded into the memory only whenitisneeded
during program execution. Pagesthat are never accessed are never |oaded
intothememory.

- Whenever aprocessrequestsfor apage and that pageisnot in memory
thenMMU raisesaninterrupt caled pagefault or amissing pageinterrupt.

- Areferencedringisan ordered list of memory referencesmadeby aprocess.

- A techniguemadeavailableby virtual memory caled copy-on-writemakes
the process creation faster and conserves memory.

- TheFirgt-In, Firgt-Out (FIFO) isthe simplest page repl acement a gorithm.
Asthe namesuggests, thefirst pageloaded into the memory isthefirst page
isto bereplaced.

- The Optimal Page Replacement (OPT) agorithmisthebest possible page
replacement a gorithminwhich the pageto bereferenced inthemost distant
futureisreplaced.

- TheLeast Recently Used (LRU) dgorithmisan gpproximeationtotheoptimal
algorithm in which the page that has not been referenced for thelongest
timeisreplaced.

- The second chance page replacement algorithm (sometimesa so referred
to asclock agorithm) isarefinement over FIFO agorithmwhich replaces
thepagethat isboth the ol dest aswell asunusedinstead of the ol dest page
that may be heavily used.

- TheLeast Frequently Used (LFU) algorithm replacesthe pagethat isleast
frequently used.

- TheMost Frequently Used (MFU) a gorithm replaces the page that has
been just brought in and isyet to be used.

9.13 KEY WORDS

e Addressbinding: It isthe process of mapping addresses associated with
aprogram to memory addresses

¢ Paging: A processinwhichthephysica memoryisdividedintofixed-sized
blockscalled pageframesand logica memory isaso dividedinto fixed-

Self-Instructional
Material 207

Memory Management
Srategies

NOTES

Self-Instructional
208 Material

sizeblockscdled pageswhich arethe same s ze asthe pageframes. Address
trandation isdoneusing amapping table, caled pagetable

Segmentation: A memory management schemethat implementsthe user
view of aprogram, in whichtheentirelogical addressspaceisconsidered
asacollection of segmentswith each segment havinganumber and alength

Segmentation with paging: Itisacombination of theadvantages of both
paging, (such asuniform page size) and segmentation, (such asprotection
and sharing) together into asingle scheme. Inthisscheme, each segmentis
divided into number of pages. To keep track of these pages, apagetableis
maintained for each segment

Swapping: A memory management schemethat can be used toincrease
CPU utilization. The process of bringing aprocessto memory and after
running for awhile, temporarily copyingit to disk isknown as swapping

- Overlaying: A techniquethat allowsaprocessto be executed even when

the system does not have sufficient physical memory

- Virtual memory: A techniquethat allowsexecution of aprogramthat is

bigger than the physical memory of the computer system

- Demand paging: A systeminwhichapageisloaded intothememory only

when it isneeded during program execution. Pagesthat are never accessed
arenever |loadedinto thememory

- Copy-on-write: A techniquemadeavailableby virtua memory that makes

process creation faster and conserves memory

9.14 SELF-ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1
2.
3.

What isaddressbinding?When doesit take place?
Namethe different memory management strategies.
Write short noteson:

(8 Segmentation

(b) Swapping

(c) Pagingtable

What isthe basi ¢ concept of virtual memory?

When does apage fault occur? Mention the stepsthat aretaken to handle
apagefault.

6. What isdemand paging? List someof its advantages.

State the hardware support required for demand paging.

Long-Answer Questions Memory Management
Srategies

1. Consder thefollowing memory mapwithanumber of variablesizepartitions.
24M

NOTES

Assumethat initially, all the partitions are empty. How would each of the
firgt fit, best fit and theworst it partition selection d gorithmsdl ocatememory
to thefollowing processesarriving oneafter another?

(@) P ofsize2M

(b) P,of size2.9M
(c) P,ofsizel.4M
(d) P,of size5.4M

Doesany of thedgorithmsresult in processwaiting because of insufficient
memory avail able?Also determinethea gorithmsthat will lead to the most
efficient useof memory.

2. Which of thefollowing memory management schemessuffer frominterna
or externd fragmentation?

(&) Multiplefixed-partition
(b)Multiplevarigble-partition
(c)Peging

(d)Segmentation

3. Consider a paged memory system with 16 pages of 2048 byteseach in
logical memory and 32 framesin physical memory. How many bitswill
each of thefollowing comprise?

(a) Logicd address
(b)Page number

(c) Pageoffset
(d)Physical address

4. Consider apaged memory system with 2:¢bytesof physical memory, 256
pages of logical address space, and a page size of 2'°bytes, how many
bytesarein apageframe?

5. Can aprocess on apaged memory system access memory allocated to
some other process? Why or why not?

6. What arethetwo major differences between segmentation and paging?
Explangivingsuitableexample.

7. How doesthe segmentation schemeadlow different processesto sharedata
or code?Discussin brief.

Self-Instructional
Material 209

Memory Management
Srategies

210

NOTES

Self-Instructional
Material

8. Usingthefollowing segment table, compute the physica addressfor the
logica address consi sting of segment and offset as given bel ow.

Base Limit
0| 5432 350
1| 15 100
2| 2200 780
3| 4235 1100
4| 1650 400
Segment Table
(@) Segment 0 and of fset 193
(b) Segment 2 and offset 546
(c) Segment 3 and offset 1265
9. What istheideabehind combining segmentation with paging? Whenisit

useful?

10. The copy-on-writetechnique makesthe creation of aprocessfaster and
conservesmemory. Explainin brief.

11. What is Belady’s anomaly? Does the LRU replacement algorithm suffer
from thisanomaly? Justify your answer with anexample.

12. Consider thefollowing reference string consisting of 6 pagesfrom0to 7.

012310451012652101

Determine how many page faults would occur in case of (a) FIFO
replacement, (b) Optimal replacement and (c) LRU replacement assuming
one, two, threeand four frames.

9.15 FURTHER READINGS

Silberschatz, Abraham, Peter B. Galvin and Greg Gagne. 2008. Operating System
Concepts, 8th Edition. New Jersey: JohnWiley & Sons.

Tanenbaum, Andrew S. 2006. Oper ating Systems Design and Implementation,
3rd Edition. New Jersey: PrenticeHall.

Tanenbaum, Andrew S. 2001. Moder n Operating Systems. New Jersey: Prentice
Hall.

Deitel, Harvey M. 1984. An Introduction to Operating Systems. Boston (US):
Addison-Wedey.

Stdlings, William. 1995. Operating Systems, 2nd Edition. New Jersey: Prentice
Hall.

Milenkovic, Milan. 1992. Operating Systems. Conceptsand Design. New York:
McGraw Hill Higher Education.

Mano, M. Morris. 1993. Computer System Architecture. New Jersey: Prentice
Hall Inc.

File System, Access

BL OCK -V Methods and Directory
FILE SYSTEM

UNIT 10 FILE SYSTEM, ACCESS NOTES
METHODS AND
DIRECTORY

Sructure

10.0 Introduction
10.1 Objectives
10.2 FileConcept
1021 FileAttributes
1022 FileOperations
1023 File Types
10.3 Access Methods
10.4 Directory
10.5 Answersto Check Your Progress Questions
10.6 Summary
10.7 Key Words
10.8 Self-Assessment Questions and Exercises
10.9 Further Readings

10.0 INTRODUCTION

The operating system abstractsfrom the physical propertiesof itsstorage devices
and defines alogical storage unit known asafile. Thisallowsuser to directly
accessthedata(on physica devices) without knowing wherethedataisactualy
stored. A fileisacollection of related datastored asanamed unit onthe secondary
storage. It can storedifferent typesof data, liketext, graphic, database, executable
code, sound, videos, etc. and on the basis of thedata, afile can be categorized as
adatafile, graphicfile, databasefile, executablefile, soundfile, videofile, etc. File
operationsarethefunctionsthat can beperformed on afile. An operating system
handlesthefile operationsthrough theuse of system calls. Thevariousoperations
that can beperformed on afilearecreate, write, read, seek, del ete, open, append,
rename and close afile. The operating system can handle afilein areasonable
way only if it recognizesand supportsthat filetype. Thefilestructurereferstothe
internal structureof thefile, that is, how afileisinternally stored inthe system.

Thefilegtructurereferstotheinterna structureof thefile, that is, how afile
isinternaly stored inthe system. When theinformationinthefileisaccessedin
order, onerecord after theother, it iscalled sequential access. To overcomethis

Self-Instructional
Material 211

File System, Access
Methods and Directory

NOTES

Self-Instructional
212 Material

problem, the data on the disk is stored as blocks of data with index numbers
which helpsto read and write dataon the disk in any order known asrandom or
direct access.

To managethisdata, thedisk isdivided into one or more partitions also
known asvolumesand each partition containsinformation about thefilesstored in
it. Thisinformationisstored inadirectory a so known asdevicedirectory.

Inthisunit, youwill study the conceptsof file, accessmethodsand directory.

10.1 OBJECTIVES

After going throughthisunit, youwill beableto:
- Introducethe basic conceptsof files
- Definethefileattributesand file operations

- Discuss about the various access methods, such as sequential and direct
access method

- Explainthedefinition and functions of havingadirectory

10.2 FILE CONCEPT

Asdgtated intheintroduction, asystem storesdataon variousstoragedevices. The
operating system, however, for the convenience of use of dataon these devices
providesauniformlogica view of the datastorageto the users. The operating
system abstractsfrom the physica propertiesof itsstorage devicesand definesa
logical storage unit known asafile. Thisalowsuser to directly accessthedata
(on physica devices) without knowing wherethedataisactually stored.

A fileisacollection of related datastored asanamed unit onthe secondary
storage. It can store different typesof data, liketext, graphic, database, executable
code, sound, videos, etc. and on the basisof the data, afile can be categorized as
adatafile, graphicfile, databasefile, executablefile, soundfile, videofile, etc.

Moreover, thestructure of afileisbased on thetypeof thefile. For example,
agraphicfileisan organized collection of pixels, adatabasefileisacollection of
tablesand records, and abatchfileisacollection of commands.

Note: From a users’ view, it is not possible to write data directly to a storage device until
it iswithin afile.
10.2.1 FileAttributes

Afileinasystemisidentified by itsname. Thefile name helpsauser to locate a
specificfileinthe system. Different operating systemsfollow different file naming
conventions. However, most operating systems accept afile name asastring of
characters, or numbersor some special symbolsaswell. For instance, names, such
asal i ce,t om3546,!hel | oandt abl e2- 1 areall valid file names. Note

that some operating systemsdi stinguish the upper and lower case charactersinthe
filenames. For instance, in UNIX thefilenamesAl i ce, al i ce, ALI CErefer
tothree different fileswhereas, in DOS and Windowsthey refer to the samefile.

Apart fromthefilename, someadditiona information (also knownasfile
attributes) isaso associated with eech file. Thisinformation helpsthefilesystem
to manageafilewithinthesystem. Thefileattributesrelated to afilemay vary in
different operating systems. Some of thecommon fileattributesareasfollows.

- Name: Helpstoidentify and locate afilein the system.

- Size: Storesinformation about the current size of thefile (in bytes, words,
or blocks).

- Type: Helpsthe operating system to recognize and use the recommended
program to open a particular file type. For instance, to open an mpeg
(multimedia) file, operating system usesamediapl ayer.

- ldentifier: A uniquetag, usually anumber that helpsthefile system to
recognizethefilewithinthefilesystem.

- Location: A pointer that storeslocationinformeation of thedeviceandlocation
of thefileonthat device.

- Dateand Time Storesinformation relatedto afile, such as, creation, last
modification and last use. Such information may be useful in case of
protection, security and monitoring, etc.

- Protection: Storesinformation about the accesspermissions (read, write,
execute) of different users. For example, it may specify who can accessthe
fileand which operations can be performed on afile by auser.

Figure 10.1 showsthelist of someattributesthat MS DOS attachesto afile.

Date Time Size Name and Type
A1.-30-20009 ©@3:33 PH 323 EHC.CPP
H2-18-2088 81:-48 PH 22,858,184 antivir_workstation_winu_en_h_exe

2-03-2807 ©1:21 PH 3 src.txt

Fig. 10.1 File Attributes of MSDOS

Theinformation related to afileis stored asadirectory entry in the directory
structure. The directory entry includes the file’s name and the unique identifier. The

identifier inturnlocatesthe other fil e attributes.
10.2.2 File Operations

File operationsarethe functionsthat can be performed on afile. An operating
system handlesthefile operationsthrough the use of system calls. Thevarious
operationsthat can be performed on afile are create, write, read, seek, del ete,

open, append, renameand close afile.

- Create a File: To bring afile into existence, the cr eat e system call is
used. When this system call isused, the operating system searchesfor the
freegpaceinthefilesystemand alocatesit tothefile. In addition, the operating

File System, Access
Methods and Directory

NOTES

Self-Instructional
Material

213

File System, Access
Methods and Directory

NOTES

Self-Instructional
214 Material

system makes a directory entry to record the name, location and other
information about thefile.

- Open-File: Toopen afile, theopen system call isused which acceptsthe

file name and the access-mode (read, write, execute) as parameters and
returns a pointer to the entry in the open-file table (a table in the main
memory that storesinformation about thefilesthat are opened at aparticular
time). The operating system searchesthe directory entry tablefor thefile
name and checks if the access permission in directory entry matches the
request. If that access-modeisallowed, it then copiesthedirectory entry of
thefileto theopen-filetable.

- Writeto aFile: To store datainto afile, thewr i t e system call isused

which acceptsthefile nameand thedatato bewritten to thefileasparameters.
The operating system searchesthedirectory entry to locatethefileand writes
datato the specified position in the file and al so updatesthe write pointer to
thelocation where next write operation isto take place.

- Read a File: To retrieve data from afile, the r ead system call is used

which acceptsthefile name, amount of datato beread and aread pointer to
point to the position from where the dataisto be read as parameters. The
operating system searchesthe specified fileus ng thedirectory entry, performs
the read operation and updates the pointer to the new location. Note that
sinceaprocessmay beonly reading or writing afileat atime, asingle pointer
called current position pointer can be used for both reading and writing.
Every timearead or write operationisperformed, thispointer must be updated.

- Seek File: To position the pointer to aspecific positioninafile, theseek

system call isused. Oncethe pointer ispositioned, datacan beread from and
writtento that position.

- Close File: When all the operations on a file are completed, it must be

closed using the cl ose system call. The operating system searches and
erasesthefileentry from the open-filetable to make space for the new file
entries. Some systemsautomatically close afilewhen the processthat has
opened thefileterminates.

- Delete File: When afileisnot required, thedel et e system call isused.

The operating system searchesthefilenamein thedirectory listing. Having
found the associated entry, it releasesall space allocated to thefile (that can
be reused by other files) by erasing its corresponding directory entry.

- Append File: To add dataat the end of an existing file, append system call

isused. Thissystem call workssimilar tothewr i t e system call, except that
it pogtionsthe pointer to the end of fileand then performsthe write operation.

- RenameFile: To changethe nameof an existingfile, r enane system call

isused. Thissystem call changesthe existing entry for thefilenameinthe
directory toanew file name.

10.2.3 File Types

Asstated in the above sections, files can be of different types. The operating system
canhandleafilein areasonableway only if it recognizesand supportsthat filetype.
A user request to open an executablefilewith atext editor will produce garbageif
the operating system has not been told that it isan executablefile.

Themost common techniquetoimplement afiletypeisby providing extension
toafile. Thefile nameisdivided into two parts, with the two parts separated by a
period (“.”) symbol, where the first part is the name and the second part after the
period isthefile extension. A file extension is generally one to three characters
long, it indicatesthe type of thefile and the operations (read, write, execute) that
can be performed onthat file. For example, inthefilenamel t | esl . doc, 1t | esl
isthenameand . doc isthefile extension. The extension . doc indicates that
I t1 esl . doc isadocument fileand should be opened with an editor. Similarly, a
filewith. exe or. comextensonisan executablefile. Table 10.1listsvariousfile
types, extension and their meaning.

Table 10.1 File Types and Extensions

Filetype | Extension I M eaning

Archive arc, zip, tar Related files compressed and grouped
together into singlefile for storage

Batch bat, sh An executable file stores a series of
commands that can be executed with a
single command

Backup file | bak, bkf Stores a copy of the data on the disk, used
for recovering system crash

Executable | exe, com bin Used to run various programs on a
computer

Library lib, a, so, dllI, Stores libraries of routines for programmers

Image brmp, jpeg, gif, Stores images and graphics

jfif, dib
Multimedia | npeg, np2, npa, Stores audio and video information
npe

Object obj, o Machine language file, precompiled, used
for generating output

Systemfile |inf, ini, drv Stores system information for loading and
managing different applications

Text txt, doc Stores textual data, documents

Word wp, txt, rrf, doc Stores various word processor formats

processor

File extensionshelp the operating system to know about the application program
that has created thefile. For instance, thefilewith .txt extension will be opened
with atext editor and thefilewith .mp3 extension will be opened withamusic
player supporting the .mp3files. Note that the operating system automatically
openstheapplication program (for theknown file types) whenever auser double
clicksthefileicon.

File System, Access
Methods and Directory

NOTES

Self-Instructional
Material 215

File System, Access
Methods and Directory

216

NOTES

Self-Instructional
Material

Some operating systems, such asUNI X, support the use of double extension
toafilename. For example, thefilenamef i | el. c. z isavalidfilename, where
. ¢ meansthatfi | elisaClanguagefileand. z meansthefileiscompressed
using somezip program. A file extension can be system defined or user defined.

Another way toimplement thefiletypeistheuse of Magic Number. A
magic number isasequence of bits, placed at the starting of afileto indicate
roughly thetypeof file. The UNIX system makes use of magic number to recognize
thefiletype. However, not dl itsfileshave magic numbers. UNIX system dlows
file-name-extension hintsto helpitsuser determinethetype of contentsof thefile,
it.

Check Your Progress

1. Definetheconcept of file.

2. Statethecommonfileattributes.

3. What arethefileoperationsthat can be performed on afile?
4. Namethemost common techniqueto implement any filetype.

10.3 ACCESS METHODS

Theinformation stored inthefilecan beaccessed inoneof thetwoways. sequentia
accessor direct access.

Sequential Access

When theinformationinthefileisaccessed in order, onerecord after theother, it
is called sequential access. It isthe easiest file access method. Compilers,
multimediaapplications, sound filesand editors arethe most common examples
of the programsusing sequential access.

The most frequent and common operations performed on afileareread
and write operations. In case of read operation, therecord at thelocation pointed
by thefile pointer isread and thefile pointer isthen advanced to the next record.
Similarly, in case of write operation, therecord iswrittento the end of thefileand
pointer isadvanced to the end of new record.

Direct Access

Withtheadvent of disksasastorage media, large amount of data can be stored
onit. Sequential access of thisdatawould be very lengthy and slow process. To
overcomethisproblem, thedataonthedisk isstored asblocks of datawithindex
numberswhich helpsto read and write dataon thedisk in any order (known as
random or dir ect access).

Under direct access, afileisviewed as asegquence of blocks (or records)
which are numbered. Therecords of afile can beread or written in any order

using thisnumber. For instance, itispossibleto read block 20, thenwriteblock 4,
and then read block 13. The block number isanumber given by theuser. This
number isreativetothebeginning of thefile. Thisrelativenumber internally hasan
actual absolutedisk address. For example, therecord number 10 can havethe
actual address 12546 and block number 11 can have the actual address 3450.
Therelative addressisinternaly mapped to the absolute disk addressby thefile
system. The user gives relative block number for accessing the data without
knowingtheactual disk address. Depending on the system, thisrelative number
startswitheither Oor 1 for afile.

Indirect access, the system callsfor read and write operations are modified
toinclude the block number as aparameter. For instance, to perform theread or
writeoperationonafile, user givesr ead norw i t e n (nistheblock number)
rather thanr ead next orwri t e next system callsusedinsequential access.

Most applicationswith large databases require direct access method for
immediate accessto large amounts of information. For example, inarailway
reservation system, if acustomer requeststo check the statusfor reservation of
theticket, the system must be ableto accesstherecord of that customer directly
without having the need to access all other customers’ records.

Notethat an operating system may support either sequential accessor direct
access, or both for accessing thefiles. Some systemsrequireafileto bedefined as
sequential or direct whenitiscreated, sothat it can beaccessedintheway itis
declared.

10.4 DIRECTORY

Asdtated earlier, acomputer stores numerousdataon disk. To managethisdata,
thedisk isdivided into one or more partitions (also known asvolumes) and each
partition containsinformation about thefilesstored init. Thisinformationisstored
inadirectory (aso known asdevicedirectory). Figure 10.3 showsdifferent
file-system organi zation.

Directory Directory Directory

Partition C Disk1
< Partition C \
Files
Files Disk 1
Partition C Directory Disk1 < Files
N
Files
Partition D Disk2
(a) Single Disk Single Partition (b) Single Disk Multi Partition (c) Multi disk single partition

Fig. 10.3 Various File System Organization Schemes

File System, Access
Methods and Directory

NOTES

Self-Instructional
Material

217

File System, Access
Methods and Directory

218

NOTES

Self-Instructional
Material

Note: It is possible to have more than one operating system on a single disk, where a
user can boot any of the operating system according to the need.

Different operationsthat can be performed on adirectory areasfollows.

- Create a File: New files can be created and added to a directory by
adding adirectory entry init.

- Sear ch aFile Whenever afileisrequired to be searched, itscorresponding
entry issearched inthedirectory.

- List aDirectory: All thefilesalong with their contentsin the directory
entry arelisted.

- RenameaFile A filecan berenamed. A user might need to renamethefile
withthechangeinitscontent. Whenafileisrenamed itsposition withinthe
directory may a so change.

- DeleteaFile: When afileisnolonger required, it can bedel eted from the
directory.

- TraversetheFile System: Every directory and every filewithinadirectory
structure can be accessed.

Note: A directory is aflat file that stores information about files and subdirectories.

Therearevariousschemesto definethestructure of adirectory. Themaost commonly
used schemesare asfollows.

- Single-levd directory
- Two-leve directory
- Hierarchica directory
All these schemes are discussed in subsequent section.

Single-Level Directory

Single-level directory isthesmplest directory structure. Thereisonly onedirectory
that holdsall thefiles. Sometimesthisdirectory isreferred to asroot directory.
Figure10.4 showsasngle-levd directory structure havingfivefiles. Inthisfigure,
box representsdirectory and circlesrepresent files.

| user |hi.n | lib ‘ <+— directories

O/ <«— Files

Fig. 10.4 Sngle-Level Directory Structure

Themain drawback of thissystemisthat no two files can have the same name. For File System, Access
instance, if oneuser (say, j 0j o) createsafilewithnamef i | el andthenanother Methodsand Directory
user (say, abc) aso createsafilewiththe samename, thefile created by the user

abc will overwritethefile created by theuserj oj o. Thus, al thefilesmust have

uniquenamesin asingle-level directory structure. With theincreasein the number NOTES

of filesand userson asystem, it becomesvery difficult to have unique namesfor all
thefiles.

Two-Levd Directory

In atwo-level directory structure, a separate directory known as User File
Directory (UFD) iscreated for each user. Whenever, anew UFD iscreated, an
entry isaddedtotheM aster FileDirectory (MFD) whichisat thehighest level
inthisstructure (Refer Figure 10.5). When auser refersto aparticular file, first,
theMFD issearched for the UFD entry of that user and then thefileissearchedin
the UFD.

I l
| comp | | e | —» Master file directory
l

|a.a|‘b1|b2||dﬂ|aa||dd|b2 |Fl||sm|b1 sm [l | — Userfils directory

FELELEEE 1888

Fig. 10.5 Two-Level Directory Sructure

Unlike, single-level directory structure, only thefile names should beuniqueina
two-level directory. That is, theremay befileswith samenamein different directories.
Thus, therewill not be the problem of name-collisioninthisdirectory structure but
thereisone disadvantagethat the usersin thisdirectory structurearenot allowed to
accessfilesof other users. If auser wantsto accessafile of other user, he needs
special permissions from the administrator. In addition, to access other users’ file,
the user must know the correct path name (whichincludesthe user nameand the
file name). Note that different systems use different syntax for file naming in
directories. For instance, inMSDOS, to accessthefileinthesm directory, the user
gives/ / conp/ sm where/ / referstoroot, conp isthe user name, smisthe
directory.

In somesituations, auser might need to accessfiles other thantheir ownfile.
Onesuch stuation might occur with syssemfiles. Theuser might want to usesystem
programslikecompilers, assemblers, loaders, or other utility programs. Insucha
case, to copy all thefilesin every user directory would requireal ot of space and
thus, would not befeasible. Onepossible solution to thisisto makeaspecia user
directory and copy systemfilesintoit. Now, whenever afilenameisgiven, itisfirst
searchedinthelocal UFD, and if not found therethen thefileissearched in the
specia user directory that containssystemfiles.

Self-Instructional
Material 219

File System, Access
Methods and Directory

220

NOTES

Self-Instructional
Material

Hierarchical Directory

The hierarchical directory, also known astree of directory or tree-structured
directory, allowsusersto have subdirectoriesunder their directories, thusmaking
thefile system morelogical and organized for the user. For instance, auser may
havedirectory f ur ni t ur e, which storesfilesrelated to types of furniture say
wooden, st eel , cane, etc. Further, he wants to define a subdirectory which
states the kind of furniture available under eachtype say sof a, bed,t abl e,
chai r, etc. Under this system, the user has the flexibility to define, group and
organizedirectories and sub-directoriesaccording to hisrequirements.

user bin lib root

D1 D2 D3 D8 D10 D12

é é v v \ 4
D34 D9 | D1 D11
. '8 .
A 4
© 0 ¢

Fig. 10.6 Hierarchical Directory Sructure

The hierarchical directory structure has the root directory at the highest
level, which isthe parent directory for al directories and subdirectories. The
root directory generdly conssts of system library files. All files or directories at
the lower levels are called child directories and a directory with no files or
subdirectory is called aleaf. Every filein the system has a unique path name.
A path name is the path from the root, through all the sub-directories, to a
specified file. Figure 10.6 shows the hierarchical directory structure having
different levels of directories, subdirectories and related files.

Theuser under hierarchical directory system can accessfilesof other users
inaddition to hisown files. To accessthefilesthe user can specify either absolute
path name or relative path name. The absolute path name beginsat the root and
follows a path down to the specified file or using the relative path name that
defines a path from the current working directory. For instance, to accessafile
under directory D1, using absolute path name, the user will give the path
\'\ bi n\ D8\ D1\ f i | enane. On the other hand, if the user’s current working
directoryis\ \ bi n\ D8, therelative pathnamewill beD1\ f i | enane.

Inthisstructure, the major concernisthede etion of thefiles. If adirectory is
empty it can be deleted smply; however, if thedirectory containssubdirectoriesand
files, they need to be handled first. Some systems, for example, MSDOSrequiresa
directory to be completely empty before the del ete operation can be performed on
it. Theuser will haveto deleteall thefiles, subdirectories, filesin subdirectories
before performing the del ete operation on adirectory. Whereas, other systems, for
example, UNIX isflexibleasit allows user to delete acompl ete directory structure
containing filesand subdirectory with asingler m command. Thoughitiseasy for
auser to handle del ete operation on directory under the UNIX system, but it increases
the chances of accidental deletion of files.

Notee MSDOS, WINDOWS, and UNIX are some of the examples of
systemsusing hierarchica directory structure.

Check Your Progress

5. Definetheterms, such as sequential accessand direct access.

6. List downthedifferent operationsthat can be performed on adirectory.
7. Defineroot directory.

8. What do you understand by hierarchical directory?

9. How dowedefineachild, leaf and parent directory?

10.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Theoperaing system, however, for the convenience of use of dataon these
devicesprovidesauniformlogical view of the datastorageto the users.
The operating system abstractsfrom the physical propertiesof itsstorage
devicesand definesalogicd storageunit known asafile.

2. Some of thecommon fileattributesare asfollows.
Name: Helpstoidentify and locate afilein thesystem.

Size: Storesinformation about the current size of thefile(inbytes, words,
or blocks).

Type: Hel psthe operating system to recognize and use the recommended
program to open aparticular filetype. For instance, to open an mpeg
(multimedia) file, operating system usesamediaplayer.

Identifier: A uniquetag, usually anumber that hel psthefile systemto
recognizethefilewithinthefilesystem.

Location: A pointer that storeslocation information of the deviceand
location of thefileonthat device.

File System, Access
Methods and Directory

NOTES

Self-Instructional
Material

221

File System, Access
Methods and Directory

222

NOTES

Self-Instructional
Material

Dateand Time: Storesinformation related to afile, such as, creation,
last modificationand last use. Such information may beuseful in case of
protection, security and monitoring, etc.

Protection: Storesinformeation about the accesspermissions (read, write,
execute) of different users. For example, it may specify who can access
thefileand which operations can be performed on afileby auser.

3. Fleoperationsarethefunctionsthat canbeperformed onafile. Anoperating

system handlesthefileoperationsthroughtheuseof sysemcadls. Thevarious
operationsthat can be performed on afile are create, write, read, seek,
delete, open, append, renameand closeafile.

Open-File: To open afile, the open system call isused which acceptsthe
file name and the access-mode (read, write, execute) as parameters and
returns a pointer to the entry in the open-file table (atablein the main
memory that storesinformation about thefilesthat are opened at aparticular
time). The operating system searchesthedirectory entry tablefor thefile
name and checksif the access permissionin directory entry matchesthe
request. If that access-modeisallowed, it then copiesthedirectory entry of
thefiletotheopen-filetable.

. Themost common techniquetoimplement afiletypeishby providing extensgon

toafile Thefilenameisdivided into two parts, with thetwo parts separated
by a period (*.”) symbol, where the first part is the name and the second
part after theperiod isthefileextension. A fileextensonisgenerdly oneto
three characterslong, it indicates the type of thefile and the operations
(read, write, execute) that can be performed onthat file.

. When theinformationin thefileisaccessed in order, onerecord after the

other, it iscalled sequential access. It isthe easiest file access method.
Compilers, multimediaapplications, sound filesand editorsarethe most
common examplesof the programs using sequentia access.

With the advent of disksasastorage media, large amount of datacan be
stored onit. Sequentid access of thisdatawould bevery lengthy and slow
process. To overcomethisproblem, the dataon the disk isstored asblocks
of datawithindex numberswhich helpsto read and write dataon the disk
inany order (known asrandom or direct access).

6. Different operationsthat can be performed on adirectory areasfollows.

Create aFile: New files can be created and added to adirectory by
adding adirectory entry init.

Search a File: Whenever a file is required to be searched, its
corresponding entry issearched in thedirectory.

List aDirectory: All thefilesalong with their contentsin the directory
entry arelisted.

RenameakFile: A filecan berenamed. A user might need to renamethe File System, Access
. Methods and Directory

filewith thechangeinitscontent. When afileisrenamedits position

within thedirectory may aso change.

DeleteaFile: When afileisnolonger required, it can bedeleted from NOTES
thedirectory.

TraversetheHle System: Every directory and every filewithinadirectory
structure can be accessed.

7. Single-level directory isthesmplest directory structure. Thereisonly one
directory that holdsall thefiles. Sometimesthisdirectory isreferred to as
root directory.

8. Thehierarchical directory, aso known astree of directory or tree-structured
directory, allows usersto have subdirectories under their directories, thus
making thefile system morelogical and organized for the user.

9. Thehierarchical directory structure hastheroot directory at the highest
level, whichisthe parent directory for all directoriesand subdirectories.
Theroot directory generally consists of system library files. All filesor
directoriesat thelower levelsare called child directoriesand adirectory
with nofilesor subdirectory iscaled aleaf. Every fileinthesystemhasa
unique path name.

10.6 SUMMARY

- Theoperating system, however, for the convenience of use of dataon these
devicesprovidesauniformlogical view of the datastorageto the users.
The operating system abstractsfrom the physical propertiesof itsstorage
devicesand definesalogicd storageunit known asafile.

- Afileisacollection of related datastored asanamed unit on the secondary
storage. It can store different types of data, liketext, graphic, database,
executable code, sound, videos, etc. and onthe basisof thedata, afilecan
be categorized asadatafile, graphic file, databasefile, executablefile,
soundfile, videofile, etc.

- Apart fromthefile name, someadditiona information (also known asfile
attributes) isal so associated with eachfile. Thisinformation helpsthefile
system to manageafilewithinthesystem. Thefileattributesrelatedto afile
may vary indifferent operating systems.

- Theinformationrelated to afileisstored asadirectory entry in thedirectory
structure. The directory entry includes the file’s name and the unique identifier.
Theidentifier inturnlocatestheother fileattributes.

- Fleoperationsarethefunctionsthat can be performed on afile. Anoperating
system handlesthefile operationsthroughtheuseof sysemcdls. Thevaious

Self-Instructional
Material 223

File System, Access
Methods and Directory

224

NOTES

Self-Instructional
Material

operationsthat can be performed on afile are create, write, read, seek,
delete, open, append, renameand closeafile.

Open-File: To open afile, the open system call isused which acceptsthe
file name and the access-mode (read, write, execute) as parameters and
returns a pointer to the entry in the open-file table (atablein the main
memory that storesinformation about thefilesthat are opened a aparticular
time). The operating system searchesthedirectory entry tablefor thefile
name and checksif the access permissionin directory entry matchesthe
request. If that access-modeisallowed, it then copiesthedirectory entry of
thefiletothe open-filetable.

- Sinceaprocess may be only reading or writing afile at atime, asingle

pointer called current position pointer can be used for both reading and
writing. Every timearead or write operation is performed, thispointer must
be updated.

- Themost commontechniquetoimplement afiletypeisby providingextenson

toafile Thefilenameisdividedinto two parts, with thetwo parts separated
by a period (*.”) symbol, where the first part is the name and the second
part efter the period isthefileextension. A fileextensionisgeneraly oneto
three characterslong, it indicatesthe type of the file and the operations
(read, write, execute) that can be performed onthat file.

- Theinformation stored in thefile can be accessed in one of thetwo ways:

sequentia accessor direct access.

- To managethisdata, thedisk isdivided into one or more partitions (al so

known asvolumes) and each partition containsinformation about thefiles
storedinit. Thisinformationisstoredin adirectory (a soknown asdevice
directory).

- Therearevarious schemesto definethe structure of adirectory. The most

commonly used schemesareasfollows.
- Single-leve directory

- Two-levd directory

- Hierarchica directory

- Inatwo-leve directory structure, aseparate directory knownasUser File

Directory (UFD) iscreated for each user. Whenever, anew UFD iscregted,
anentry isadded totheMaster File Directory (MFD) whichisat the highest
levd inthisstructure. When auser refersto aparticular file, first, theMFD
issearched for the UFD entry of that user andthen thefileissearchedinthe
UFD.

- Thehierarchical directory structure hastheroot directory at the highest

level, whichisthe parent directory for al directories and subdirectories.

Theroot directory generally consists of system library files. All filesor
directoriesat thelower levelsarecalled child directoriesand adirectory
with nofilesor subdirectory iscalled aleaf. Every fileinthesystem hasa
unique path name.

10.7 KEY WORDS

- File: Afileisacollection of related data stored as anamed unit on the

secondary storage.

- Filesystem: Primarily respons blefor the management and organization

of variousfilesinasystem.

- Fileoperations. Functionsthat can be performed on afile.
- ldentifier: A uniquetag, usually anumber that helpsthefile systemto

recognizethefilewithinthefilesystem.

- Append file: To add dataat theend of an existingfile, append system call

isused.

- Seguential access: A typeof accessmodewhentheinformationinafileis

accessed in order, onerecord after the other.

- Direct access: When afileisviewed asasequence of blocks(or records)

which are numbered and can be read or written in any order using this
number.

10.8 SELF-ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

[EEN

© 0N O A WN

. What do you understand by the concept of file?

. Statetheattributes of fileinasystem.

. How do we seek any filein an operating system?

. What isthesignificanceof current position pointer?

Why do we use magic number in theimplementation of any filetype?
What isarecord sequence?

. What isthedifference between sequential and direct access methods?
. What isdefinition of user filedirectory?
. Statefew examples of systemsusing hierarchical directory structure.

File System, Access
Methods and Directory

NOTES

Self-Instructional
Material 225

File System, Access
Methods and Directory

226

NOTES

Self-Instructional
Material

Long-Answer Questions

1. Describethe concept of file, attributesof files, filetypesand filestructure.
2. Elaborate onthe difference between byte, record and tree sequence.

3. Explain briefly about the access methods of an operating systems.

4. What isdirectory? Explainitsfunctionsand different operations.

5. Discussbriefly about the architecture of the single-level directory, two-
level directory and hierarchical directory.

10.9 FURTHER READINGS

Silberschatz, Abraham, Peter B. Galvin and Greg Gagne. 2008. Operating System
Concepts, 8th Edition. New Jersey: JohnWiley & Sons.

Tanenbaum, Andrew S. 2006. Operating Systems Design and Implementation,
3rd Edition. New Jersey: Prentice Hall.

Tanenbaum, Andrew S. 2001. Moder n Operating Systems. New Jersey: Prentice
Hal.

Deitel, Harvey M. 1984. An I ntroduction to Operating Systems. Boston (US):
Addison-Wedey.

Sdlings, William. 1995. Operating Systems, 2nd Edition. New Jersey: Prentice
Hdl.

Milenkovic, Milan. 1992. Operating Systems. Conceptsand Design. New York:
McGraw Hill Higher Education.

Mano, M. Morris. 1993. Computer System Architecture. New Jersey: Prentice
Hdl Inc.

UNIT 11 FILE STRUCTURE

Sructure

11.0 Introduction

11.1 Objectives

11.2 Definition of File Structure

11.3 File System Mounting

114 FileSharingand Locking

115 FileProtection

11.6 Answersto Check Your Progress Questions

11.7 Summary

11.8 Key Words

11.9 Self-Assessment Questions and Exercises
11.10 Further Readings

11.0 INTRODUCTION

Thefilestructurereferstotheinternal structureof thefile, that is, how afileis
interndly soredinthesystem. Inthisfilegtructure, eachfileismadeup of asequence
of 8-hit byteshaving no fixed structure. The operating system does not attach any
meaning to thefile. It istheresponsibility of the application program to include
codetointerpret theinput fileinto an appropriate structure. Inthisfilestructure, a
filecongstsof asequenceof fixed-length recordswherearbitrary number of records
can beread from or writtento afile. Inthisfilestructure, afileconsstsof atree of
disk blockswhereeach block holdsanumber of recordsof varied lengths. Each
record containsakey field at afixed position. A file system isacombination of
methods and datastructureswhichisa so useful for any operating system to keep
track of filesonadisk or partition and statestheway thefilesare organized onthe
disk. To attach apartition or deviceto thedirectory hierarchy you must mount its
associated devicefile. To do this, amount point hasto be created. Thisissimply
adirectory wherethedevicewill beattached. Thisdirectory exisison aprevioudy
mounted device (with the exception of theroot directory (/) whichisaspecia
case) andisempty. If thedirectory isnot empty, thenthefilesin thedirectory will
not bevisiblewhilethedeviceismounted but will reappear after thedevicehas
been disconnected or uncounted.

In computer system file sharing isknown as enabling accessto digitally
stored information that may befile having some program or atext document,
€lectronic book or audio/video typemultimediafiles. If adocument inform of file
isdistributed by other means, itisa so atype of file sharing. A filesystem can be
damaged dueto variousreasons such as, asystem breakdown, theft, fire, lightning
or any other extremecondition that isunavoi dableand uncertain. Itisvery difficult
to restorethe databack in such conditions.

File Sructure

NOTES

Self-Instructional
Material

227

File Sructure

228

NOTES

Self-Instructional
Material

Inthisunit, your will study thebasic conceptsof filestructure, filesystem
mounting, filesharing and protection of files.

11.1 OBJECTIVES

After going throughthisunit, youwill beableto:
- Describethebasi cs conceptsof file structure
- Understand the concept and functionsof file system mounting
- Discussabout theprocessof filesharing
- Andysethe advantages and disadvantages of protecting file system

11.2 DEFINITION OF FILE STRUCTURE

Thefilestructurereferstotheinterna structureof thefile, thatis, how afileis
internally storedinthe system. Themost common file structuresrecognized and
enforced by different operating syslemsareasfollows:

- Byte Sequence: Inthisfilestructure, each fileismade up of asequence of
8-bit bytes (Refer Figure 11.1(a)) having no fixed structure. The operating
system does not attach any meaning tothefile. It istheresponsibility of the
application program to include code to interpret the input file into an
appropriate structure. Thistype of filestructure providesflexibility to the
user programsasthey can storeany type of datain thefilesand namethese
filesinany way as per their convenience. UNIX operating systemssupport
thistypeof filestructure.

- Record Sequence: Inthisfilestructure, afile consists of asequence of
fixed-length recordswhere arbitrary number of records can beread from
or written to afile. Therecordscannot beinserted or deleted inthemiddle
of afile. Inthissystem, theread operation returnsonerecord and thewrite
operation appends or overwrites one record. CP/M operating system
supportsthistype of scheme.

1 byte 1 record

| '
NN NNNNN R NN N " U D D O R

(a) Byte Sequence (b) Record Sequence

(c) Tree Structure

Fig. 1.1 File Sructures

- TreeStructure Inthisfilestructure, afile consists of atreeof disk blocks FileStructure
where each block holdsanumber of recordsof varied lengths. Each record
containsakey field at afixed position. Therecords are searched on key
value and new records can beinserted anywhereinthefile structure. This
typeof filestructureisused on mainframe systemwhere, itiscaled | SAM NOTES
(Indexed Sequential AccessM ethod).

Regardless of thefile structure used, all disk 1/0 take placein terms of
blocks (physical records) wheredll blocksare of equa sizesandthe size of
ablock isgenerally determined by the size of the sector. Sincethe disk
spaceto afileisallocated in anumber of blocks, some portion of the last
block in afileisgenerally wasted. For instance, if each block isof 512
bytes, then afile of 3150 byteswould be allocated seven blocks, and the
last 434 byteswill bewasted. Thewastage of bytesto keep everythingin
unitsof blocks (instead of bytes) isinternal fragmentation. Notethat dl file
systemsfaceinternal fragmentation and with larger block sizes, thereis
moreinterna fragmentation.

11.3 FILE SYSTEM MOUNTING

A filesysemisacombination of methodsand datastructureswhichisa souseful
for any operating system to keeptrack of filesonadisk or partition and statesthe
way thefilesare organized onthedisk. We canrefer to afile system asapartition
or disk that can be used to storefilesor thetype of thefile system.

Itisimportant to differentiate thedisk or partition and thefile sysemwhich
it contains. It should al so be noted that many programs operatedirectly ontheraw
sectorsof adisk or partition which a so includesthe program that create afile
system. If afilesystemisalready thereit will be destroyed or corrupted. Most
programs operate on afile system and thereforewill not work on apartition that
does not oneor have has one of thewrong type.

Thefilesystemisaprocesswhich starttsmuch beforeapartition or disk can
beused asafilesystem, prior to thisthe bookkeeping datastructuresneed to be
written to the disk.

Thegeneral structure of most UNIX file systemsissimilar, athoughthe
exact detailsvary quiteabit. The central conceptsof afilesystem includesthe
following:

- Superblock

- Inode

- Datablock

- Directory block
- Indirectionblock

Self-Instructional
Material 229

File Sructure Thesuperblock containsinformation about thefile syssem asawhole, such
asitssize (the exact information here dependson thefile system).

Aninode containsall theinformation about afile, except itsname. The
nameisstoredinthedirectory together with the number of theinode. A directory
entry cons stsof afilenameand the number of theinodewhich representsthefile.
Theinode containsthe numbers of the datablocksthat are used to storethe data
inthefile

Thereisspaceonly for afew datablock numbersintheinode, however,
and if more are needed, more spacefor pointersto the datablocksisallocated
dynamicdly.

Thesedynamically all ocated blocksareindirect blocks; thenameindicates
that in order to find the data block, one has to find its number in the indirect
block fird.

Creating File Systems

Afilesystemiseither thedevicefile associated with the partition or deviceor isthe
directory wherethefile systemis mounted.

The basic requirement to mount apartition or to useapartition isthat the
filesystemmust first beinstalled on it by using ext2. Thisisalso aprocess of
creating Inodes and data bl ocks.

Thisprocessof formatting the partition assimilar toMSDOST or mat
command in Windows. In Linux, thecommandto createafilesystemiscalled

NOTES

nkfs.
Thecommandisissuedin thefollowing way:
mkfs [-c] [-t fstype] file system [blocks]
where

- ¢ forcesacheck for bad blocks
-t f st ype specifiesthefilesystemtype
Theshorthandfor most filesystem types.

Thefollowing istheexamplesyntax:
mkfs -t ext2 /dev/£fd0 # Make a ext2 file system
on a floppy
nkfs -t ext 2 canalsobewrittenasnke2f s or nkf s. ext 2 and
nkfs -t vfat ornkfs -t nmsdos canalsobewrittenasnkf s. vf at
nkfs. msdos or nkdosf s

Note: Remember that creating afile system on adevice with an existing file systemwill cause
all dataon the old file system to be erased.

M ountingand Unmounting

To attach a partition or device to the directory hierarchy you must mount its
associated devicefile. To do this, amount point hasto be created. Thisissimply

Self-Instructional
230 Material

adirectory wherethedevicewill beattached. Thisdirectory exisson aprevioudy File Sructure
mounted device (with the exception of theroot directory (/) whichisaspecia

case) andisempty. If thedirectory isnot empty, thenthefilesin thedirectory will

not bevisiblewhilethedeviceismounted but will reappear after thedevicehas

been disconnected (or unmounted). NOTES

To mount adevice, usethenmount command:

nount [swi tches] device file nmount_point

Incertain devices, nount will detect what typeof filesystem existsonthe
device; however itiscommon to use mount in thefollowing form:

mount [switches] -t file_systemtype device file
nmount _poi nt

Generally, only theroot user can usethenount command mainly dueto
thefact that the devicefilesare owned by root. For example, to mount thefirst

partition on thesecond hard driveof the/ usr directory and assumingit contained
theext2file system, you would enter the command:

nmount -t ext2 /dev/hdbl /usr

A common devicethat ismounted isthefloppy drive. A floppy disk generdly
containsthe FileAllocation Table (FAT), alsoknown asnsdos file system (but
not aways) and ismounted with the command:

mount -t nsdos /dev/fdO / mt

Notethat thefloppy disk was mounted under the/ nmt directory. Thisis
becausethe/ mt directory isthe usual placeto temporarily mount devices.

To see what devices are currently mounted, simply type the command
nmount . Typingit onthesystemreveds:

/dev/ hda3 on / type ext2 (rw)

/dev/ hdal on /dos type nmsdos (rw)
none on /proc type proc (rw

[dev/ cdromon /cdromtype i s09660 (r o)
[dev/fdO on /mt type nmsdos (rw)

If weexaminethesecommands, eech linetdlsuswhat devicefileismounted,
whereitismounted, what file system type each partitionisand how itis mounted
(r o =read only, r w= read/write). Note the unusual entry on line. Thisisa
special “virtual’ file system used by Linux systems to store information about the
kernel, processes and current resource usages. It is actually part of the system’s
memory; inother words, the kernd setsaside an areaof memory inwhichit stores
information about the system. Thisareaismounted onto thefile system so user
programs can accessthisinformation.

Theinformation in the proc file system can al so be used to seewhat file
systemsaremounted by i ssuing the command:

Self-Instructional
Material 231

File Sructure

232

NOTES

Self-Instructional
Material

$ cat /proc/ mounts
/dev/root / ext2rw0O
proc /proc proc rwO0 O
[dev/ hdal /dos nmsdos rwO0 O
[dev/ cdrom/cdromiso9660 ro 0 O
/dev/fdO /mt nmsdos rwO0 O

To release adevice and disconnect it from the file system, theunount
command isused. Itisissuedinthefollowingform:

unount device file
or
urmount nount _poi nt
To releasethefloppy disk, you would issue the command:
umount / mmt
or

umount /dev/fdoO

Thepoint to note hereisthat either you should be theroot user or auser
with somespecia privilegesto dothis. You cannot unmount adevi ce/ nount
point that is in use by a user (the user’s current working directory is within the
mount point) or isin use by aprocess. Nor canyou unmountdevi ces/ nmount
pointswhichinturn have devicesmountedto them. Thisdl leadsto question, how
doesthe system know which devicesto mount when the OS boots?

AsinUNIX, inLinux asothereisafilewhich governsthe behaviour of
mounting devicesat boot time. In Linux, thisfileis/ et ¢/ f st ab.

Sothenext questionis, what isinthefile?Anexamplelinefromthef st ab

fileusesthefollowing format:
device_file mount_point file_system_ type
mount_options [n] [n]

Thefirg threefid dsare sdlf explanatory; thefourthfidd, mount _opt i ons
defineshow the device will be mounted, which includesinformation of access
moder o/ r w, execute permissions and other information. Thefifth and sixth
fieldsare used by the system utilitiesdunp and f sck, respectively.

11.4 FILE SHARING AND LOCKING

Sharing meansthings avail able for more than one person. If anitemisshared
between many persons, it should be avail ableto each of them. In computer system
filesharingisknown asenabling accessto digitally stored information that may be
filehaving some program or atext document, electronic book or audio/video type
multimediafiles. If adocument inform of fileisdistributed by other means, itis
asoatypeof filesharing. Therearemanua methods of sharing filesby copyingon

some removable medium such asfloppy diskettesor CD-ROM of aflash derive, File Sructure
from one system and then putting the same on other system that reads such files.

Such amethod of sharing requiresphysical movement of themedium on
whichfilesarestored. Use of computer networksisoneof themost efficient and
quick meansof filesharing. Thisrequiresingallation of acentralized computer that
actsasfileserver on the computer networks. Thelargest network, World Wide
Web containshyperlinked documentsand clicking on thisleads oneto therequired
page. Therearevarioustypesof networking, centralized aswell asdistributed, for
sharingfiles. P2P (peer-to-peer) networkingisalso used to sharefilesthat isone
most popular option sharing of filesharing on the Internet. Softwarethat connects
to aP2P network can be used for sharing filesthat reside on others computers
known aspeers. Once connected, desired file(s) can easily bedownloaded, directly
from other computer that is peer onthe network.

Computer networking isdonewith themain objectiveof sharinginformation.
Sinceinformation resideson computer indigital form, asafile, thisinformation
sharing issharing of files. Many networks of computers, and also those of smaller
networks, were created for sharing files. In year 1979, USENET was created.
Thisnetwork wasinitially based on UNIX to UNIX Communication Protocol
(UUCP) enabling did-up connections and was transported across Internet using
specialized protocol in client-server architecture in Network News Transfer
Protocol (NNTP). Main objectivewasfor exchanging text based messages, but
attachmentswere a so possiblethat could be encoded for distribution subscribers
who participatein thenewsgroupsof USENET.

Napster whichiscentralized but unstructured P2P systemwasreleased in
theyear 1999 inthemonth of June. Napster requiresacentral server for indexing
aswdll aslocating apeer. Napster clamsto bethefirst P2Psystemfor filesharing.

In the year 2000, Gnutella (March), Freenet (July) and eDonkey2000
(September) werereleased. Gnutellawasfirst decentralized network for file
sharing. Inthisnetwork therewasno central point and all connecting software had
equd status. Thus, the problem of system going out of order if central point failed
wasnot aproblem. Freenet wasfirst anonymity network. TheeDonkey2000 was
based on client and server software.

Software Kazaa and Poisoned, for Mac OS, were released in the year
2001. FastTrack network was having distributed architecture. Moretraffic was
assigned to ‘supernodes’ for increasing routing efficiency. This network was
encrypted and proprietary.

NOTES

Sharing of Files/Folderson Windows

Windows operating system like any other platform provided softwarefor file
sharing.

Self-Instructional
Material 233

File Sructure

234

NOTES

Self-Instructional
Material

Windows XP

Usersof XP can sharefolder by making aright onthefolder and then selecting
Sharingand Security option.

Scan for Yiruses., .,

J Send Ta 3

Cut
B o
—c Paste
Creste Shortcut

|| Delete

— Rename

@ Propesties
T

After selecting Sharing and Security option from the dropdown menu a
window isdisplayed that givesoption for sharing folder. You find an option Share
thisfolder. Check theradio buttonto enable sharing option. There are other tabs
too for adding security features and putting alimit on number of users. Seethe
screenshot given bel ow:

lop roperies 20

Gereral Sharing ISecurIyI Customize |

. _/ “Y'ou can shate this folder with other users on pour
= network. Toenable sharing for this folder. click Share this
folder,
" Da hot share this folder

1 Share this folder

Share name: E'DD

Commeri: [

Uz bmit. % Mawmum sllowed

™ Allow this number o users: j;_!

To et peimissions for users who sccess ths
folder aver the netwark, click P ions.

To configure settings for offine access, click s
Caching. _ Cooting|

Pemissions |

Windows Frewall will be configured Lo allaw this folder Lo be
shated with other computers on the retwork.

Wiew ‘windows Frewall settings

ok | cencel | apy |

Select option asneeded and then click apply. Therewill beachangeinthe
folder icon and ahand isadded.

WindowsVista

Sharingin WindowsVistaisnot much different. Makearight click onthefolder
and select Share. Select Everybody in the combo box and then click the Add
button. The next step ischanging permission level to the Contributor or Co-
owner. Thisgivesuser who may accessfilesand have permissionto make changes

inthe sharedfiles. The button Shar e shows exact network sharefor accessing
shared folder. Here, inthisexample, itis\WVI STAPC\NETWORK. Thelink
‘Show me all the network shares on this computer’ displaysall previously
foldersthat are shared. When you click the Done button, folder icon changesand
makesitlook that itisashared folder.

Permissionsaswell as name of shared folder may be edited by making a
right click on Properties, thentaking tab Sharing, and Advanced settingsbutton.
To use advanced settings as default, sharing wizard should bedisabled. For this,
choose Organize, Folder and Search Options, take the tab View and then
disable. You may take the option